|
Diameters of state spaces of Jordan Banach algebras
Sh. A. Ayupov, Sh. M. Usmanov
Abstract:
The notion of diameter $D(A)$ of the state space of a Jordan Banach algebra ($JBW$-algebra $A$) is introduced. The diameters of the state spaces for $JBW$-factors of type $\mathrm I_n$ ($n<+\infty$), $\mathrm I_\infty$,
$\mathrm{II}_1$, $\mathrm{II}_\infty$, $\mathrm{III}_\lambda$ ($0<\lambda<1$) are computed.
It is proved that if $A$ is not a factor, or is a factor of type $\mathrm I_\infty$ or $\mathrm{II}_1$, then $D(A)=2$. If $A$ is a $JBW$-factor of type
$\mathrm I_n$ ($n<+\infty$), then $D(A)=2(1-1/n)$, and if $A$ is a $JBW$-factor of type $\mathrm{III}_\lambda$ ($0<\lambda<1$), then
$D(A)=2(1-\sqrt\lambda)/(1+\sqrt\lambda)$ or
$D(A)=2(1-\sqrt[4]\lambda)/(1+\sqrt[4]\lambda)$.
Bibliography: 15 titles.
Received: 16.06.1987
Citation:
Sh. A. Ayupov, Sh. M. Usmanov, “Diameters of state spaces of Jordan Banach algebras”, Math. USSR-Izv., 34:2 (1990), 229–244
Linking options:
https://www.mathnet.ru/eng/im1238https://doi.org/10.1070/IM1990v034n02ABEH000622 https://www.mathnet.ru/eng/im/v53/i2/p227
|
Statistics & downloads: |
Abstract page: | 256 | Russian version PDF: | 80 | English version PDF: | 11 | References: | 49 | First page: | 1 |
|