Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 33, Issue 3, Pages 473–499
DOI: https://doi.org/10.1070/IM1989v033n03ABEH000853
(Mi im1225)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the Mordell–Weil and Shafarevich–Tate groups for Weil elliptic curves

V. A. Kolyvagin
References:
Abstract: Let $E$ be a Weil elliptic curve over the field $\mathbf Q$ of rational numbers, $L(E,\mathbf Q,s)$ the $L$-function over $\mathbf Q$, $\varepsilon=(-1)^{g+1}$, where $g$ is the order of the zero of $L(E,\mathbf Q,s)$ at $s=1$. Let $K$ be the imaginary quadratic extension of $\mathbf Q$ with discriminant $D\equiv\textrm{square}\pmod{4N}$, $y\in E(K)$ the Heegner point, $A=E$ or the nontrivial form of $E$ over $K$ according as $\varepsilon=-1$ or $1$. It is proved that if $y$ has infinite order (which is so if $(D,2N)=1$, $L'(E,K,1)\ne0)$, then the groups $A(\mathbf Q)$ and $Ш(A)$ are annihilated by a positive integer $C$ (in particular the groups are finite) determined by $y$. When $\varepsilon=1$ it is proved that $C^2$ coincides with the conjectured finite order of $Ш(A)$ for some $A$ with $L(A,\mathbf Q,1)\ne0$. It is also proved that $Ш$ is trivial for 23 elliptic curves.
Bibliography: 21 titles.
Received: 04.02.1988
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 11G40, 11D25, 11F67; Secondary 11G05, 14K07, 14G10, 11F33
Language: English
Original paper language: Russian
Citation: V. A. Kolyvagin, “On the Mordell–Weil and Shafarevich–Tate groups for Weil elliptic curves”, Math. USSR-Izv., 33:3 (1989), 473–499
Citation in format AMSBIB
\Bibitem{Kol88}
\by V.~A.~Kolyvagin
\paper On~the Mordell--Weil and Shafarevich--Tate groups for Weil elliptic curves
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 3
\pages 473--499
\mathnet{http://mi.mathnet.ru//eng/im1225}
\crossref{https://doi.org/10.1070/IM1989v033n03ABEH000853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=984214}
\zmath{https://zbmath.org/?q=an:0681.14016}
Linking options:
  • https://www.mathnet.ru/eng/im1225
  • https://doi.org/10.1070/IM1989v033n03ABEH000853
  • https://www.mathnet.ru/eng/im/v52/i6/p1154
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024