|
This article is cited in 20 scientific papers (total in 20 papers)
Stochastically complete manifolds and summable harmonic functions
A. A. Grigor'yan
Abstract:
Main result: if on a geodesically complete Riemannian manifold $M$ the volume $V_R$ of a geodesic ball of radius $R$ with fixed center satisfies the condition
$\displaystyle\int^\infty\frac{R\,dR}{\ln V_R}=\infty$ then every nonnegative integrable superharmonic function on $M$ is equal to a constant.
Bibliography: 18 titles.
Received: 29.04.1986
Citation:
A. A. Grigor'yan, “Stochastically complete manifolds and summable harmonic functions”, Math. USSR-Izv., 33:2 (1989), 425–432
Linking options:
https://www.mathnet.ru/eng/im1221https://doi.org/10.1070/IM1989v033n02ABEH000850 https://www.mathnet.ru/eng/im/v52/i5/p1102
|
|