Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 33, Issue 2, Pages 373–390
DOI: https://doi.org/10.1070/IM1989v033n02ABEH000837
(Mi im1217)
 

Projection from the spaces $E^p$ on a convex polygon onto subspaces of periodic functions

A. M. Sedletskii
References:
Abstract: Notation: $D$ is a convex polygon with vertices $a_1,\dots,a_m$, $P_k$ is the half-plane bounded by the extension of the side $a_k$, $a_{k+1}$ and containing $D$, $E^p$ is the Hardy–Smirnov space on $D$, and $Q_s$ is the subspace of $E^p$ consisting of the analytic functions on $P_k$ that are periodic with period $a_{k+1}-a_k$ and that vanish at $\infty$. For suitable $s$ the subspaces $Q_s$ and $H_1^p,\dots,H_m^p$ generate $E^p$. Is $E^p$ ($1<p<\infty$) decomposable into their direct sum? If $m$ is odd, then the answer is positive for $p\ne2$ and negative for $p=2$.
Bibliography: 15 titles.
Received: 02.10.1986
Bibliographic databases:
UDC: 517.5
MSC: Primary 30C99, 30H05; Secondary 30D55, 30D15
Language: English
Original paper language: Russian
Citation: A. M. Sedletskii, “Projection from the spaces $E^p$ on a convex polygon onto subspaces of periodic functions”, Math. USSR-Izv., 33:2 (1989), 373–390
Citation in format AMSBIB
\Bibitem{Sed88}
\by A.~M.~Sedletskii
\paper Projection from the spaces $E^p$ on a~convex polygon onto subspaces of periodic functions
\jour Math. USSR-Izv.
\yr 1989
\vol 33
\issue 2
\pages 373--390
\mathnet{http://mi.mathnet.ru//eng/im1217}
\crossref{https://doi.org/10.1070/IM1989v033n02ABEH000837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=972095}
\zmath{https://zbmath.org/?q=an:0722.30021}
Linking options:
  • https://www.mathnet.ru/eng/im1217
  • https://doi.org/10.1070/IM1989v033n02ABEH000837
  • https://www.mathnet.ru/eng/im/v52/i5/p1051
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025