Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1989, Volume 32, Issue 3, Pages 523–541
DOI: https://doi.org/10.1070/IM1989v032n03ABEH000779
(Mi im1191)
 

This article is cited in 53 scientific papers (total in 53 papers)

Finiteness of $E(\mathbf Q)$ and $Ш(E,\mathbf Q)$ for a subclass of Weil curves

V. A. Kolyvagin
References:
Abstract: Let $E$ be an elliptic curve over $\mathbf Q$, admitting a Weil parametrization $\gamma\colon X_N\to E$, $L(E,\mathbf Q,1)\ne0$. Let $K$ be an imaginary quadratic extension of $\mathbf Q$ with discriminant $\Delta\equiv\textrm{square}\pmod{4N})$, and let $y_K\in E(K)$ be a Heegner point. We show that if $y_K$ has infinite order ($K$ must not belong to a finite set of fields that can be described in terms of $\gamma$), then the Mordell–Weil group $E(\mathbf Q)$ and the Tate–Shafarevich group $Ш(E,\mathbf Q)$ of the curve $E$ (over $\mathbf Q$) are finite. For example, $Ш(X_{17},\mathbf Q)$ is finite. In particular, $E(\mathbf Q)$ and $Ш(E,\mathbf Q)$ are finite if $(\Delta,2N)=1$ and $L_f'(E,K,1)\ne0$, where $f=\infty$ or $f$ is a rational prime such that $\bigl(\frac fK\bigr)=1$ and $(f,Na_f)=1$, where $a_f$ is the coefficient of $f^{-s}$ in the $L$-series of $E$ over $\mathbf Q$. We indicate in terms of $E$, $K$, and $y_K$ a number annihilating $E(\mathbf Q)$ and $Ш(E,\mathbf Q)$.
Bibliography: 11 titles.
Received: 25.06.1987
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 11G40, 11G05, 11F67; Secondary 14K07, 11D25, 14G10, 11R23
Language: English
Original paper language: Russian
Citation: V. A. Kolyvagin, “Finiteness of $E(\mathbf Q)$ and $Ш(E,\mathbf Q)$ for a subclass of Weil curves”, Math. USSR-Izv., 32:3 (1989), 523–541
Citation in format AMSBIB
\Bibitem{Kol88}
\by V.~A.~Kolyvagin
\paper Finiteness of $E(\mathbf Q)$ and $\textit{Ш}(E,\mathbf Q)$ for a~subclass of Weil curves
\jour Math. USSR-Izv.
\yr 1989
\vol 32
\issue 3
\pages 523--541
\mathnet{http://mi.mathnet.ru//eng/im1191}
\crossref{https://doi.org/10.1070/IM1989v032n03ABEH000779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954295}
\zmath{https://zbmath.org/?q=an:0662.14017}
Linking options:
  • https://www.mathnet.ru/eng/im1191
  • https://doi.org/10.1070/IM1989v032n03ABEH000779
  • https://www.mathnet.ru/eng/im/v52/i3/p522
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024