Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1990, Volume 34, Issue 1, Pages 43–64
DOI: https://doi.org/10.1070/IM1990v034n01ABEH000584
(Mi im1161)
 

This article is cited in 5 scientific papers (total in 5 papers)

Analytic perturbation theory for a periodic potential

Yu. E. Karpeshina
References:
Abstract: The operator $\mathbf H_\alpha=(-\Delta)^l+\alpha V$ is considered in $L_2(\mathbf R^n)$; here $4l>n+1$, $n\geqslant2$, $V$ is a periodic potential, and $\alpha$ is a perturbation parameter, $-1\leqslant\alpha\leqslant1$. An analytic perturbation theory with respect to $\alpha$ is constructed for Block eigenfunctions and the corresponding eigenvalues of $\mathbf H_\alpha$. It is proved that, for large energies, when the quasimomentum belongs to a sufficiently rich set they admit expansion in a Taylor series in the disk $|\alpha|\leqslant1$, and these series are asymptotic in the energy and infinitely differentiable with respect to the quasimomentum.
Bibliography: 14 titles.
Received: 22.12.1986
Bibliographic databases:
UDC: 517.947
MSC: 35J10, 35B20, 35P99
Language: English
Original paper language: Russian
Citation: Yu. E. Karpeshina, “Analytic perturbation theory for a periodic potential”, Math. USSR-Izv., 34:1 (1990), 43–64
Citation in format AMSBIB
\Bibitem{Kar89}
\by Yu.~E.~Karpeshina
\paper Analytic perturbation theory for a~periodic potential
\jour Math. USSR-Izv.
\yr 1990
\vol 34
\issue 1
\pages 43--64
\mathnet{http://mi.mathnet.ru//eng/im1161}
\crossref{https://doi.org/10.1070/IM1990v034n01ABEH000584}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=992978}
\zmath{https://zbmath.org/?q=an:0689.35065}
Linking options:
  • https://www.mathnet.ru/eng/im1161
  • https://doi.org/10.1070/IM1990v034n01ABEH000584
  • https://www.mathnet.ru/eng/im/v53/i1/p45
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:398
    Russian version PDF:119
    English version PDF:23
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024