Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1990, Volume 35, Issue 3, Pages 469–518
DOI: https://doi.org/10.1070/IM1990v035n03ABEH000715
(Mi im1152)
 

This article is cited in 6 scientific papers (total in 6 papers)

Modular representations of the Galois group of a local field, and a generalization of the Shafarevich conjecture

V. A. Abrashkin
References:
Abstract: Let $M\Gamma^{\mathrm{cris}}(\mathbf Q_p)$ be the category of crystalline representations of the Galois group of the field of fractions of the ring of Witt vectors of an algebraically closed field of characteristic $p>0$. The author describes the subfactors annihilated by multiplication by $p$ of the representations from $M\Gamma^{\mathrm{cris}}(\mathbf Q_p)$ arising from filtered modules of filtration length $<p$, and proves a generalization of the Shafarevich conjecture that there do not exist abelian schemes over $\mathbf Z$: if $X$ is a smooth proper scheme over the ring of integers of the field $\mathbf Q$ (respectively $\mathbf Q(\sqrt{-1}\,)$, $\mathbf Q(\sqrt{-3}\,)$, $\mathbf Q(\sqrt{-5})$ ), then the Hodge numbers of the complex manifold $X_{\mathbf C}$ satisfy $h^{ij}=0$ for $i\ne j$ and $i+j\leqslant3$ (respectively $i+j\leqslant2$).
Bibliography: 17 titles.
Received: 01.03.1988
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: Primary 11S25, 14F30; Secondary 11G10
Language: English
Original paper language: Russian
Citation: V. A. Abrashkin, “Modular representations of the Galois group of a local field, and a generalization of the Shafarevich conjecture”, Math. USSR-Izv., 35:3 (1990), 469–518
Citation in format AMSBIB
\Bibitem{Abr89}
\by V.~A.~Abrashkin
\paper Modular representations of the Galois group of a~local field, and a~generalization of the Shafarevich conjecture
\jour Math. USSR-Izv.
\yr 1990
\vol 35
\issue 3
\pages 469--518
\mathnet{http://mi.mathnet.ru//eng/im1152}
\crossref{https://doi.org/10.1070/IM1990v035n03ABEH000715}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1039960}
\zmath{https://zbmath.org/?q=an:0733.14008}
Linking options:
  • https://www.mathnet.ru/eng/im1152
  • https://doi.org/10.1070/IM1990v035n03ABEH000715
  • https://www.mathnet.ru/eng/im/v53/i6/p1135
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:487
    Russian version PDF:140
    English version PDF:23
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024