Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 2, Pages 285–315
DOI: https://doi.org/10.1070/im1997v061n02ABEH000115
(Mi im115)
 

This article is cited in 4 scientific papers (total in 4 papers)

Solubility of non-linear elliptic systems in spaces that are weaker than the natural energy space

E. A. Kalita
References:
Abstract: We introduce a scale of spaces that are dual to the classical Morrey space. We establish the solubility of non-linear elliptic systems on an interval of this scale, the range of the interval being essentially dependent on the modulus of ellipticity of the system. As a consequence, we prove solubility when the right-hand side is
(1) a Lebesgue space with exponent weaker than the Sobolev exponent,
(2) a space of densities of finite Borel measure, and
(3) a Hardy space for $p\leqslant 1$ under certain restrictions on the modulus of ellipticity.
We prove the existence and good behaviour of solutions of fundamental type. Our results are also completely new for linear systems with bounded discontinuous coefficients.
Received: 01.03.1995
Bibliographic databases:
MSC: 58G03, 58D10
Language: English
Original paper language: Russian
Citation: E. A. Kalita, “Solubility of non-linear elliptic systems in spaces that are weaker than the natural energy space”, Izv. Math., 61:2 (1997), 285–315
Citation in format AMSBIB
\Bibitem{Kal97}
\by E.~A.~Kalita
\paper Solubility of non-linear elliptic systems in spaces that are weaker than the natural energy space
\jour Izv. Math.
\yr 1997
\vol 61
\issue 2
\pages 285--315
\mathnet{http://mi.mathnet.ru//eng/im115}
\crossref{https://doi.org/10.1070/im1997v061n02ABEH000115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1470143}
\zmath{https://zbmath.org/?q=an:0947.35058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XZ08200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746978845}
Linking options:
  • https://www.mathnet.ru/eng/im115
  • https://doi.org/10.1070/im1997v061n02ABEH000115
  • https://www.mathnet.ru/eng/im/v61/i2/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025