Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 1, Pages 149–168
DOI: https://doi.org/10.1070/IM2008v072n01ABEH002396
(Mi im1140)
 

This article is cited in 20 scientific papers (total in 20 papers)

On sets of large trigonometric sums

I. D. Shkredov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove the existence of non-trivial solutions of the equation $r_1+r_2=r_3+r_4$, where $r_1$, $r_2$, $r_3$ and $r_4$ belong to the set $R$ of large Fourier coefficients of a certain subset $A$ of $\mathbb Z/N\mathbb Z$. This implies that $R$ has strong additive properties. We discuss generalizations and applications of the results obtained.
Received: 12.07.2006
Bibliographic databases:
UDC: 511.218+511.336
Language: English
Original paper language: Russian
Citation: I. D. Shkredov, “On sets of large trigonometric sums”, Izv. Math., 72:1 (2008), 149–168
Citation in format AMSBIB
\Bibitem{Shk08}
\by I.~D.~Shkredov
\paper On sets of large trigonometric sums
\jour Izv. Math.
\yr 2008
\vol 72
\issue 1
\pages 149--168
\mathnet{http://mi.mathnet.ru//eng/im1140}
\crossref{https://doi.org/10.1070/IM2008v072n01ABEH002396}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2394976}
\zmath{https://zbmath.org/?q=an:1148.11040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254303700008}
\elib{https://elibrary.ru/item.asp?id=10336926}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41549099125}
Linking options:
  • https://www.mathnet.ru/eng/im1140
  • https://doi.org/10.1070/IM2008v072n01ABEH002396
  • https://www.mathnet.ru/eng/im/v72/i1/p161
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:735
    Russian version PDF:260
    English version PDF:25
    References:84
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024