Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 5, Pages 967–999
DOI: https://doi.org/10.1070/IM2007v071n05ABEH002381
(Mi im1133)
 

This article is cited in 19 scientific papers (total in 19 papers)

Khovanov homology for virtual knots with arbitrary coefficients

V. O. Manturov

Moscow State Region University
References:
Abstract: The Khovanov homology theory over an arbitrary coefficient ring is extended to the case of virtual knots. We introduce a complex which is well-defined in the virtual case and is homotopy equivalent to the original Khovanov complex in the classical case. Unlike Khovanov's original construction, our definition of the complex does not use any additional prescription of signs to the edges of a cube. Moreover, our method enables us to construct a Khovanov homology theory for ‘twisted virtual knots’ in the sense of Bourgoin and Viro (including knots in three-dimensional projective space). We generalize a number of results of Khovanov homology theory (the Wehrli complex, minimality problems, Frobenius extensions) to virtual knots with non-orientable atoms.
Received: 12.07.2006
Bibliographic databases:
UDC: 515
MSC: 57M27, 55N99
Language: English
Original paper language: Russian
Citation: V. O. Manturov, “Khovanov homology for virtual knots with arbitrary coefficients”, Izv. Math., 71:5 (2007), 967–999
Citation in format AMSBIB
\Bibitem{Man07}
\by V.~O.~Manturov
\paper Khovanov homology for virtual knots with arbitrary coefficients
\jour Izv. Math.
\yr 2007
\vol 71
\issue 5
\pages 967--999
\mathnet{http://mi.mathnet.ru//eng/im1133}
\crossref{https://doi.org/10.1070/IM2007v071n05ABEH002381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2362875}
\zmath{https://zbmath.org/?q=an:1142.57007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252092800004}
\elib{https://elibrary.ru/item.asp?id=9597432}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37549065476}
Linking options:
  • https://www.mathnet.ru/eng/im1133
  • https://doi.org/10.1070/IM2007v071n05ABEH002381
  • https://www.mathnet.ru/eng/im/v71/i5/p111
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024