Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1991, Volume 36, Issue 3, Pages 541–565
DOI: https://doi.org/10.1070/IM1991v036n03ABEH002034
(Mi im1085)
 

This article is cited in 16 scientific papers (total in 16 papers)

The group $K_3$ for a field

A. S. Merkur'ev, A. A. Suslin
References:
Abstract: This paper gives a description of the torsion and cotorsion in the Milnor groups $K_3^M(F)$ and $K_3(F)_{nd}=\operatorname{coker}(K_3^M(F)\to K_3(F))$ for an arbitrary field $F$. The main result is that, for any natural number $n$ with $(\operatorname{char}F,n)=1$, $_nK_3(F)_{nd}=H^0(F,\mu_n^{\otimes 2})$, $K_3(F)_{nd}/n=\operatorname{ker}(H^1(F,\mu_n^{\otimes 2})\to K_2(F))$ and the group $K_3(F)_{nd}$ is uniquely $l$-divisible if $l=\operatorname{char}F$. This theorem is a consequence of an analogue of Hilbert's Theorem 90 for relative $K_2$-groups of extensions of semilocal principal ideal domains. Among consequences of the main result we obtain an affirmative solution of the Milnor conjecture on the bijectivity of the homomorphism $K_3^M(F)/2\to I(F)^3/I(F)^4$, where $I(F)$ is the ideal of classes of even-dimensional forms in the Witt ring of the field $F$, as well as a more complete description of the group $K_3$ for all global fields.
Received: 31.05.1988
Bibliographic databases:
UDC: 514.7
MSC: 19D45
Language: English
Original paper language: Russian
Citation: A. S. Merkur'ev, A. A. Suslin, “The group $K_3$ for a field”, Math. USSR-Izv., 36:3 (1991), 541–565
Citation in format AMSBIB
\Bibitem{MerSus90}
\by A.~S.~Merkur'ev, A.~A.~Suslin
\paper The group $K_3$ for a field
\jour Math. USSR-Izv.
\yr 1991
\vol 36
\issue 3
\pages 541--565
\mathnet{http://mi.mathnet.ru//eng/im1085}
\crossref{https://doi.org/10.1070/IM1991v036n03ABEH002034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1072694}
\zmath{https://zbmath.org/?q=an:0725.19003|0711.19002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..36..541M}
Linking options:
  • https://www.mathnet.ru/eng/im1085
  • https://doi.org/10.1070/IM1991v036n03ABEH002034
  • https://www.mathnet.ru/eng/im/v54/i3/p522
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024