Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1991, Volume 37, Issue 1, Pages 97–117
DOI: https://doi.org/10.1070/IM1991v037n01ABEH002054
(Mi im1074)
 

This article is cited in 5 scientific papers (total in 5 papers)

Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives

S. A. Nazarov

Leningrad State University
References:
Abstract: Full asymptotic expansions are found and justified for solutions of problems with smooth obstructions on the boundary $\partial\Omega$ and in the domain $\Omega\subset\mathbf R^n$ for the operator $-\varepsilon^2\Delta^2+1$ with a small parameter $\varepsilon$ on the highest derivatives. In the construction of the asymptotics of solutions one formally computes an asymptotic expansion of the equation that yields a singular submanifold (for example, of a surface where the type of the boundary conditions changes). Near such surfaces there occur additional boundary layers, which are determined by solving both ordinary and partial differential equations.
Received: 06.05.1987
Bibliographic databases:
UDC: 517.946
MSC: 35B20, 49A29, 47F05
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives”, Math. USSR-Izv., 37:1 (1991), 97–117
Citation in format AMSBIB
\Bibitem{Naz90}
\by S.~A.~Nazarov
\paper Asymptotic solution of variational inequalities for a linear operator with a small parameter on the highest derivatives
\jour Math. USSR-Izv.
\yr 1991
\vol 37
\issue 1
\pages 97--117
\mathnet{http://mi.mathnet.ru//eng/im1074}
\crossref{https://doi.org/10.1070/IM1991v037n01ABEH002054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1073085}
\zmath{https://zbmath.org/?q=an:0725.49005|0704.49016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..37...97N}
Linking options:
  • https://www.mathnet.ru/eng/im1074
  • https://doi.org/10.1070/IM1991v037n01ABEH002054
  • https://www.mathnet.ru/eng/im/v54/i4/p754
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024