Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 1, Pages 113–141
DOI: https://doi.org/10.1070/IM1997v061n01ABEH000107
(Mi im107)
 

This article is cited in 16 scientific papers (total in 16 papers)

Homogenization of non-stationary Stokes equations with viscosity in a perforated domain

G. V. Sandrakov

M. V. Lomonosov Moscow State University
References:
Abstract: Theorems are proved about the asymptotic behaviour of solutions of an initial boundary-value problem for non-stationary Stokes equations in a periodic perforated domain with a small period $\varepsilon$. The viscosity coefficient $\nu$ of the equations is assumed to be a positive parameter satisfying one of the following three conditions: $\nu/\varepsilon^2 \to \infty,1,0$ as $\varepsilon\to 0$. We also consider the case of degenerate Stokes equations with zero viscosity coefficient and the case of Navier–Stokes equations when the viscosity coefficient is not too small.
Received: 27.04.1995
Bibliographic databases:
MSC: Primary 35B27; Secondary 76D05
Language: English
Original paper language: Russian
Citation: G. V. Sandrakov, “Homogenization of non-stationary Stokes equations with viscosity in a perforated domain”, Izv. Math., 61:1 (1997), 113–141
Citation in format AMSBIB
\Bibitem{San97}
\by G.~V.~Sandrakov
\paper Homogenization of non-stationary Stokes equations with viscosity in a~perforated domain
\jour Izv. Math.
\yr 1997
\vol 61
\issue 1
\pages 113--141
\mathnet{http://mi.mathnet.ru//eng/im107}
\crossref{https://doi.org/10.1070/IM1997v061n01ABEH000107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1440315}
\zmath{https://zbmath.org/?q=an:0893.35095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR83300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039941168}
Linking options:
  • https://www.mathnet.ru/eng/im107
  • https://doi.org/10.1070/IM1997v061n01ABEH000107
  • https://www.mathnet.ru/eng/im/v61/i1/p113
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:586
    Russian version PDF:216
    English version PDF:20
    References:109
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024