Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 1, Pages 89–112
DOI: https://doi.org/10.1070/IM1997v061n01ABEH000106
(Mi im106)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the fundamental groups of complements of toral curves

Vik. S. Kulikov

Moscow State University of Railway Communications
References:
Abstract: We show that for almost all curves $D$ in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, where $a>1$ and $b>1$ are coprime integers, the fundamental group of the complement of the curve has presentation $\pi_1(\mathbb C^2 \setminus D) \simeq (x_1,x_2\mid x_1^a=x_2^b)$, that is, it coincides with the group of the torus knot $K_{a,b}$. In the projective case, for almost every curve $\overline D$ in $\mathbb P^2$ which is the projective closure of a curve in $\mathbb C^2$ given by an equation of the form $g(x,y)^a+h(x,y)^b=0$, the fundamental group $\pi_1(\mathbb P^2\setminus\overline D)$ of the complement is a free product with amalgamated subgroup of two cyclic groups of finite order. In particular, for the general curve $\overline D\subset\mathbb P^2$ given by the equation $l_{bc}^a(z_0,z_1,z_2)+l_{ac}^b(z_0,z_1,z_2)=0$, where $l_q$ is a homogenous polynomial of degree $q$, we have $\pi_1(\mathbb P^2\setminus\overline D)\simeq\langle x_1,x_2\mid x_1^a=x_2^b,x_1^{ac}=1\rangle$.
Received: 11.05.1995
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1997, Volume 61, Issue 1, Pages 89–112
DOI: https://doi.org/10.4213/im106
Bibliographic databases:
Document Type: Article
MSC: Primary 14H30; Secondary 14F35, 14H45, 57M05
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “On the fundamental groups of complements of toral curves”, Izv. RAN. Ser. Mat., 61:1 (1997), 89–112; Izv. Math., 61:1 (1997), 89–112
Citation in format AMSBIB
\Bibitem{Kul97}
\by Vik.~S.~Kulikov
\paper On the fundamental groups of complements of toral curves
\jour Izv. RAN. Ser. Mat.
\yr 1997
\vol 61
\issue 1
\pages 89--112
\mathnet{http://mi.mathnet.ru/im106}
\crossref{https://doi.org/10.4213/im106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1440314}
\zmath{https://zbmath.org/?q=an:0907.14013}
\transl
\jour Izv. Math.
\yr 1997
\vol 61
\issue 1
\pages 89--112
\crossref{https://doi.org/10.1070/IM1997v061n01ABEH000106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR83300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747020665}
Linking options:
  • https://www.mathnet.ru/eng/im106
  • https://doi.org/10.1070/IM1997v061n01ABEH000106
  • https://www.mathnet.ru/eng/im/v61/i1/p89
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:587
    Russian version PDF:167
    English version PDF:16
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024