Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1991, Volume 37, Issue 2, Pages 337–369
DOI: https://doi.org/10.1070/IM1991v037n02ABEH002067
(Mi im1059)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic solution of a variational inequality modelling a friction

S. A. Nazarov
References:
Abstract: The problem of minimizing the nondifferentiable functional
$$ \mu^2(\nabla u,\nabla u)_\Omega\times (u,u)_\Omega -2(f,u)_\Omega+\gamma(|u|,g)_{\partial\Omega} $$
is considered. An asymptotic solution of the corresponding variational inequality is constructed and justified under the assumption that $\mu$ or $\gamma$ is a small parameter. Also, formal asymptotic representations are obtained for singular surfaces which characterize a change in the type of boundary conditions. For $\mu\to 0$ a modification of the Vishik–Lyusternik method is used, and exponential boundary layers arise. If $\gamma\to 0$, then the boundary layer has only power growth; the principal term of the asymptotic expansion of the solution of the problem in a multidimensional region $\Omega$ and the complete asymptotic expansion for the case $\Omega\subset\mathbf R^2$ are obtained.
Received: 04.11.1988
Bibliographic databases:
UDC: 517.946
MSC: Primary 35C20; Secondary 35B25, 35J25, 49A29
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Asymptotic solution of a variational inequality modelling a friction”, Math. USSR-Izv., 37:2 (1991), 337–369
Citation in format AMSBIB
\Bibitem{Naz90}
\by S.~A.~Nazarov
\paper Asymptotic solution of a variational inequality modelling a friction
\jour Math. USSR-Izv.
\yr 1991
\vol 37
\issue 2
\pages 337--369
\mathnet{http://mi.mathnet.ru//eng/im1059}
\crossref{https://doi.org/10.1070/IM1991v037n02ABEH002067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1086083}
\zmath{https://zbmath.org/?q=an:0733.49015|0713.49012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..37..337N}
Linking options:
  • https://www.mathnet.ru/eng/im1059
  • https://doi.org/10.1070/IM1991v037n02ABEH002067
  • https://www.mathnet.ru/eng/im/v54/i5/p990
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025