Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1997, Volume 61, Issue 1, Pages 69–88
DOI: https://doi.org/10.1070/IM1997v061n01ABEH000105
(Mi im105)
 

This article is cited in 11 scientific papers (total in 11 papers)

Homogenization of non-linear second-order elliptic equations in perforated domains

V. V. Zhikova, M. E. Rychago

a Vladimir State Pedagogical University
References:
Abstract: The classical homogenization method of elliptic boundary value problems is based on the continuation of a solution, given in a perforated domain, to the entire initial domain. This method requires substantial restrictions on the perforated domain (the “strong connectedness” condition). In this paper we propose a new approach, which does not use the continuation technique. Here the “strong connectedness” is replaced by the usual connectedness.
Received: 10.07.1995
Bibliographic databases:
MSC: Primary 35B27, 35J65; Secondary 73B27
Language: English
Original paper language: Russian
Citation: V. V. Zhikov, M. E. Rychago, “Homogenization of non-linear second-order elliptic equations in perforated domains”, Izv. Math., 61:1 (1997), 69–88
Citation in format AMSBIB
\Bibitem{ZhiRyc97}
\by V.~V.~Zhikov, M.~E.~Rychago
\paper Homogenization of non-linear second-order elliptic equations in perforated domains
\jour Izv. Math.
\yr 1997
\vol 61
\issue 1
\pages 69--88
\mathnet{http://mi.mathnet.ru/eng/im105}
\crossref{https://doi.org/10.1070/IM1997v061n01ABEH000105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1440313}
\zmath{https://zbmath.org/?q=an:0884.35008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR83300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0002541951}
Linking options:
  • https://www.mathnet.ru/eng/im105
  • https://doi.org/10.1070/IM1997v061n01ABEH000105
  • https://www.mathnet.ru/eng/im/v61/i1/p69
  • This publication is cited in the following 11 articles:
    1. D. I. Borisov, “Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions”, J Math Sci, 277:6 (2023), 841  crossref
    2. D. I. Borisov, “Asimptoticheskii analiz kraevykh zadach dlya operatora Laplasa s chastoi smenoi tipa granichnykh uslovii”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 14–129  mathnet  crossref
    3. Wang L., Xu Q., Zhao P., “Convergence Rates For Linear Elasticity Systems on Perforated Domains”, Calc. Var. Partial Differ. Equ., 60:2 (2021), 74  crossref  isi
    4. Giunti A., “Convergence Rates For the Homogenization of the Poisson Problem in Randomly Perforated Domains”, Netw. Heterog. Media, 16:3 (2021), 341–375  crossref  isi
    5. T. A. Mel'nik, O. A. Sivak, “Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain”, J Math Sci, 164:3 (2010), 427  crossref
    6. Mel'nyk, TA, “Asymptotic analysis of a boundary-value problem with nonlinear multiphase boundary interactions in a perforated domain”, Ukrainian Mathematical Journal, 61:4 (2009), 592  crossref  mathscinet  zmath  isi  scopus  scopus
    7. G. V. Sandrakov, “Homogenization of variational inequalities for non-linear diffusion problems in perforated domains”, Izv. Math., 69:5 (2005), 1035–1059  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. V. V. Zhikov, M. E. Rychago, S. B. Shul'ga, “Homogenization of Monotone Operators by the Method of Two-Scale Convergence”, J Math Sci, 127:5 (2005), 2159  crossref
    9. S. E. Pastukhova, “Homogenization of a mixed problem with Signorini condition for an elliptic operator in a perforated domain”, Sb. Math., 192:2 (2001), 245–260  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. S. E. Pastukhova, “On homogenization of a variational inequality for an elastic body with periodically distributed fissures”, Sb. Math., 191:2 (2000), 291–306  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. A. M. Shirokov, N. A. Smirnova, Yu. F. Smirnov, O. Castaños, A. Frank, “IBM: Discrete symmetry viewpoint”, Phys. Atom. Nuclei, 63:4 (2000), 695  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:626
    Russian version PDF:243
    English version PDF:39
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025