Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1992, Volume 38, Issue 3, Pages 575–598
DOI: https://doi.org/10.1070/IM1992v038n03ABEH002215
(Mi im1001)
 

This article is cited in 9 scientific papers (total in 9 papers)

Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$

A. A. Tuzhilin
References:
Abstract: The Morse-type index of a compact $p$-dimensional minimal submanifold is the index of the second variation of the $p$-dimensional volume functional. In this paper a definition is given for the index of a noncompact minimal submanifold, and the indices of some two-dimensional minimal surfaces in three-dimensional Euclidean space $\mathbf R^3$ and in three-dimensional Lobachevsky space $\mathbf H^3$ are computed. In particular, the indices of all the classic minimal surfaces in $\mathbf R^3$ are computed: the catenoid, Enneper surfaces, Scherk surfaces, Richmond surfaces, and others. The indices of spherical catenoids in $\mathbf H^3$ are computed, which completes the computation of the indices of catenoids in $\mathbf H^3$ (hyperbolic and parabolic catenoids have zero index, that is, they are stable). It is also proved that for a one-parameter family of helicoids in $\mathbf H^3$ the helicoids are stable for certain values of the parameter.
Received: 22.10.1987
Bibliographic databases:
UDC: 514.77
MSC: Primary 53A10, 49Q05; Secondary 53C42
Language: English
Original paper language: Russian
Citation: A. A. Tuzhilin, “Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$”, Math. USSR-Izv., 38:3 (1992), 575–598
Citation in format AMSBIB
\Bibitem{Tuz91}
\by A.~A.~Tuzhilin
\paper Morse-type indices of of two-dimensional minimal surfaces in $\mathbf R^3$ and $\mathbf H^3$
\jour Math. USSR-Izv.
\yr 1992
\vol 38
\issue 3
\pages 575--598
\mathnet{http://mi.mathnet.ru//eng/im1001}
\crossref{https://doi.org/10.1070/IM1992v038n03ABEH002215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1129827}
\zmath{https://zbmath.org/?q=an:0788.49038|0746.49030}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992IzMat..38..575T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JE94100007}
Linking options:
  • https://www.mathnet.ru/eng/im1001
  • https://doi.org/10.1070/IM1992v038n03ABEH002215
  • https://www.mathnet.ru/eng/im/v55/i3/p581
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024