Artificial Intelligence and Decision Making
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Artificial Intelligence and Decision Making:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Artificial Intelligence and Decision Making, 2019, Issue 2, Pages 39–49
DOI: https://doi.org/10.14357/20718594190204
(Mi iipr168)
 

This article is cited in 4 scientific papers (total in 4 papers)

Natural language processing

Open information extraction from texts. Part II. Extraction of semantic relations using unsupervised machine learning

A. O. Shelmanov, J. M. Kuznetsova, V. A. Isakov, I. V. Smirnov

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (674 kB) Citations (4)
Abstract: In this paper, we discuss open information extraction from natural language texts. We present the approach to extraction of semantic relations using unsupervised machine learning. The presented approach is based on deep clustering methods in which clusterization algorithm is integrated in multi-layer autoencoder neural network. This method allows to generalize surface relations (triplets) into semantic relations. This paper also provides the method of surface relation extraction.
Keywords: open information extraction, semantic relations, unsupervised machine learning, neural networks, autoencoder.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-01477 А
16-29-12937 офи_м
English version:
Scientific and Technical Information Processing, 2020, Volume 47, Issue 6, Pages 340–347
DOI: https://doi.org/10.3103/S0147688220060076
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. O. Shelmanov, J. M. Kuznetsova, V. A. Isakov, I. V. Smirnov, “Open information extraction from texts. Part II. Extraction of semantic relations using unsupervised machine learning”, Artificial Intelligence and Decision Making, 2019, no. 2, 39–49; Scientific and Technical Information Processing, 47:6 (2020), 340–347
Citation in format AMSBIB
\Bibitem{SheKuzIsa19}
\by A.~O.~Shelmanov, J.~M.~Kuznetsova, V.~A.~Isakov, I.~V.~Smirnov
\paper Open information extraction from texts. Part II. Extraction of semantic relations using unsupervised machine learning
\jour Artificial Intelligence and Decision Making
\yr 2019
\issue 2
\pages 39--49
\mathnet{http://mi.mathnet.ru/iipr168}
\crossref{https://doi.org/10.14357/20718594190204}
\elib{https://elibrary.ru/item.asp?id=38303574}
\transl
\jour Scientific and Technical Information Processing
\yr 2020
\vol 47
\issue 6
\pages 340--347
\crossref{https://doi.org/10.3103/S0147688220060076}
Linking options:
  • https://www.mathnet.ru/eng/iipr168
  • https://www.mathnet.ru/eng/iipr/y2019/i2/p39
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Artificial Intelligence and Decision Making
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024