Loading [MathJax]/jax/output/SVG/config.js
Artificial Intelligence and Decision Making
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Artificial Intelligence and Decision Making:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Artificial Intelligence and Decision Making, 2020, Issue 1, Pages 80–87
DOI: https://doi.org/10.14357/20718594200108
(Mi iipr130)
 

This article is cited in 23 scientific papers (total in 23 papers)

Evolutionary computation and soft computing

Neural network data processing for analysis of the industrial networks parameters

R. F. Gibadullina, D. V. Lekomtseva, M. Yu. Perukhinb

a Kazan National Research Technical University named after A. N. Tupolev, Kazan, Russia
b Kazan National Research Technological University, Kazan, Russia
Abstract: We used artificial neural networks and diagnostic network information to assess the condition of PROFINET (Process Field Network). An artificial neural network determines whether the network works fine or not. An important part of this work is data preprocessing. An essential part of the work is data preprocessing. It is done using quantization, data aligning, reducing the number of inputs and other preprocessing techniques to create a new version of the dataset to improve the accuracy. The obtained data makes possible to do a number of experiments and to find out what approach of data preprocessing shows the best results. The results were evaluated on two datasets. The first dataset contains diagnostic data of a well-functioning network, and the second one consists of data in which network problems were detected. The highest accuracy obtained in this work is 98.91% of recognizing problems in the network and the accuracy of 87.70% when the network is working fine. The work also opens up opportunities to improve accuracy in the future.
Keywords: PROFINET, industrial Ethernet, network diagnostics, artificial neural networks, machine learning, data preprocessing.
English version:
Scientific and Technical Information Processing, 2021, Volume 48, Issue 6, Pages 446–451
DOI: https://doi.org/10.3103/S0147688221060046
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. F. Gibadullin, D. V. Lekomtsev, M. Yu. Perukhin, “Neural network data processing for analysis of the industrial networks parameters”, Artificial Intelligence and Decision Making, 2020, no. 1, 80–87; Scientific and Technical Information Processing, 48:6 (2021), 446–451
Citation in format AMSBIB
\Bibitem{GibLekPer20}
\by R.~F.~Gibadullin, D.~V.~Lekomtsev, M.~Yu.~Perukhin
\paper Neural network data processing for analysis of the industrial networks parameters
\jour Artificial Intelligence and Decision Making
\yr 2020
\issue 1
\pages 80--87
\mathnet{http://mi.mathnet.ru/iipr130}
\crossref{https://doi.org/10.14357/20718594200108}
\elib{https://elibrary.ru/item.asp?id=42665396}
\transl
\jour Scientific and Technical Information Processing
\yr 2021
\vol 48
\issue 6
\pages 446--451
\crossref{https://doi.org/10.3103/S0147688221060046}
Linking options:
  • https://www.mathnet.ru/eng/iipr130
  • https://www.mathnet.ru/eng/iipr/y2020/i1/p80
  • This publication is cited in the following 23 articles:
    1. Eduard Kozlov, Ruslan Gibadullin, D. Nazarov, A. Juraeva, “Prerequisites for developing the computer vision system for drowning detection”, E3S Web Conf., 474 (2024), 02031  crossref
    2. Zinnur Gizatullin, Rifnur Gizatullin, 2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2023, 261  crossref
    3. Jahongir Yoqubjonov, Ruslan Gibadullin, Marat Nuriev, D.V. Rudoy, A.V. Olshevskaya, M.Yu. Odabashyan, “Advanced robotic process automation for enterprise efficiency”, E3S Web Conf., 431 (2023), 07011  crossref
    4. Zinnur Gizatullin, Maksim Shkinderov, 2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2023, 266  crossref
    5. Elena Gracheva, Renata Maratovna Petrova, Stanimir Valtchev, Tatyana Sinyukova, 2023 5th Global Power, Energy and Communication Conference (GPECOM), 2023, 460  crossref
    6. Marsel Shakirzyanov, Ruslan Gibadullin, Marat Nuriyev, D. Nazarov, A. Juraeva, “Prerequisites for the development of the system of automatic comparison of video and audio tracks by the speaker's articulation”, E3S Web Conf., 419 (2023), 02029  crossref
    7. Elena Ivanovna Gracheva, Renata Maratovna Petrova, Tatiana Sinyukova, Stanimir Valtchev, Rosario Miceli, Massimo Caruso, 2023 International Conference on Clean Electrical Power (ICCEP), 2023, 684  crossref
    8. Marat Gumerovich Nuriev, Elena Semenovna Belashova, Konstantin Alekseevich Barabash, “Markdown File Converter to LaTeX Document”, Programmnye sistemy i vychislitelnye metody, 2023, no. 1, 1  crossref
    9. Almaz Radikovich Petrov, Elena Ivanovna Gracheva, Tatiana Sinyukova, Stanimir Valtchev, Rosario Miceli, Aqeel Ur Rahman, 2023 International Conference on Clean Electrical Power (ICCEP), 2023, 690  crossref
    10. Yuri Soluyanov, Alexander Fedotov, Azat Akhmetshin, 2023 International Russian Smart Industry Conference (SmartIndustryCon), 2023, 485  crossref
    11. Yuri Soluyanov, Alexander Fedotov, Azat Akhmetshin, 2023 International Russian Smart Industry Conference (SmartIndustryCon), 2023, 680  crossref
    12. Ivan Viktorov, Ruslan Gibadullin, D.V. Rudoy, A.V. Olshevskaya, M.Yu. Odabashyan, “The principles of building a machine-learning-based service for converting sequential code into parallel code”, E3S Web Conf., 431 (2023), 05012  crossref
    13. R. Sharipov, B. Yusupov, E. Belashova, E. Akhmetov, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”, 2921, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”, 2023, 020161  crossref
    14. Nikolai Pashin, Rinat Minyazev, Marat Nuriyev, D. Nazarov, A. Juraeva, “Development of the mathematical model for calculating player ratings using soft calculations”, E3S Web Conf., 419 (2023), 02023  crossref
    15. Z. M. Gizatullin, M. P. Shleimovich, “Research of the Radiated Electromagnetic Interference from Power Devices of the Aircraft under Modernization”, Russ. Aeronaut., 66:3 (2023), 596  crossref
    16. Elena Ivanovna Gracheva, Ibatullin Eduard Elsovich, Tatiana Sinyukova, Stanimir Valtchev, Rosario Miceli, Nicola Campagna, 2023 International Conference on Clean Electrical Power (ICCEP), 2023, 678  crossref
    17. Konstantin Barabash, Gleb Petrov, I. Tanaino, T. Dzholdosheva, “The study of the effectiveness of tools and functionality of the Tilda platform for website development”, E3S Web of Conf., 402 (2023), 03037  crossref
    18. E. Akhmetov, E. Belashova, D. Gashigullin, I. Iakovlev, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”, 2921, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”, 2023, 020159  crossref
    19. Almaz Radikovich Petrov, Elena Ivanovna Gracheva, Stanimir Valtchev, Tatiana Sinyukova, 2023 5th Global Power, Energy and Communication Conference (GPECOM), 2023, 455  crossref
    20. A. Karpov, A. Karpov, I. Vershinin, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”, 2921, INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”, 2023, 020158  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Artificial Intelligence and Decision Making
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :18
    References:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025