Abstract:
The universal expressions have been obtained for components of the tensor Green's function of an elastically anisotropic hexagonal medium. In contrast to the classical expressions (the Lifshitz–Rosenzweig method), they do not contain uncertainties of the type 0/0 upon the transition to the isotropic approximation and hold true for any hexagonal crystal. As an example of their use, the displacement and strain fields created by an edge dislocation loop lying in the basal plane of the crystal have been calculated.
Citation:
P. N. Ostapchuk, O. G. Trotsenko, “Elastic interaction of point defects with an edge dislocation loop within the Green's function formalism”, Fizika Tverdogo Tela, 58:9 (2016), 1749–1756; Phys. Solid State, 58:9 (2016), 1810–1818
\Bibitem{OstTro16}
\by P.~N.~Ostapchuk, O.~G.~Trotsenko
\paper Elastic interaction of point defects with an edge dislocation loop within the Green's function formalism
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 9
\pages 1749--1756
\mathnet{http://mi.mathnet.ru/ftt9855}
\elib{https://elibrary.ru/item.asp?id=27368746}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 9
\pages 1810--1818
\crossref{https://doi.org/10.1134/S1063783416090250}
Linking options:
https://www.mathnet.ru/eng/ftt9855
https://www.mathnet.ru/eng/ftt/v58/i9/p1749
This publication is cited in the following 2 articles:
A. V. Babich, V. F. Klepikov, P. N. Ostapchuk, “Bias for the basal edge dislocation loop in zirconium: numerical analysis”, Phys. Solid State, 62:12 (2020), 2350–2356
P. N. Ostapchuk, O. G. Trotsenko, “Analytical methods for the calculation of the elastic interaction of point defects with dislocation loops in hexagonal crystals”, Phys. Solid State, 59:5 (2017), 934–943