Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2016, Volume 58, Issue 10, Pages 1982–1988 (Mi ftt9824)  

This article is cited in 13 scientific papers (total in 13 papers)

Impurity centers

Effect of point defects on luminescence characteristics of ZnO ceramics

P. A. Rodnyia, K. A. Chernenkoa, A. Zolotarjovsb, L. Grigorjevab, E. I. Gorokhovac, I. D. Venevtseva

a Peter the Great St. Petersburg Polytechnic University
b Institute of Solid State Physics, Latvian University
c Research Institute of Optical Materials Technology, All-Russian Scientific Centre "S. I. Vavilov State Optical Institute", St. Petersburg
Abstract: Photo- and thermally stimulated luminescence of ZnO ceramics are produced by uniaxial hot pressing. The luminescence spectra of ceramics contain a wide band with a maximum at 500 nm, for which oxygen vacancies VO are responsible, and a narrow band with a maximum at 385 nm, which is of exciton nature. It follows from luminescence excitation spectra that the exciton energy is transferred to luminescence centers in ZnO. An analysis of the thermally stimulated luminescence curves allowed detection of a set of discrete levels of point defects with activation energies of 25, 45, 510, 590 meV, and defects with continuous energy distributions in the range of 50–100 meV. The parameters of some of the detected defects are characteristic of a lithium impurity and hydrogen centers. The photoluminescence kinetics are studied in a wide temperature range.
Received: 14.12.2015
Revised: 17.03.2016
English version:
Physics of the Solid State, 2016, Volume 58, Issue 10, Pages 2055–2061
DOI: https://doi.org/10.1134/S1063783416100309
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. A. Rodnyi, K. A. Chernenko, A. Zolotarjovs, L. Grigorjeva, E. I. Gorokhova, I. D. Venevtsev, “Effect of point defects on luminescence characteristics of ZnO ceramics”, Fizika Tverdogo Tela, 58:10 (2016), 1982–1988; Phys. Solid State, 58:10 (2016), 2055–2061
Citation in format AMSBIB
\Bibitem{RodCheZol16}
\by P.~A.~Rodnyi, K.~A.~Chernenko, A.~Zolotarjovs, L.~Grigorjeva, E.~I.~Gorokhova, I.~D.~Venevtsev
\paper Effect of point defects on luminescence characteristics of ZnO ceramics
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 10
\pages 1982--1988
\mathnet{http://mi.mathnet.ru/ftt9824}
\elib{https://elibrary.ru/item.asp?id=27368785}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 10
\pages 2055--2061
\crossref{https://doi.org/10.1134/S1063783416100309}
Linking options:
  • https://www.mathnet.ru/eng/ftt9824
  • https://www.mathnet.ru/eng/ftt/v58/i10/p1982
  • This publication is cited in the following 13 articles:
    1. Syed Mujtaba ul Hassan, Waseem Akram, Afia Noureen, Fazeel Ahmed, Aitazaz Hassan, Atta Ullah, “Advances in transition metals and rare earth elements doped ZnO as thermoluminescence dosimetry material”, Radiation Physics and Chemistry, 223 (2024), 111929  crossref
    2. Khaled Al Youssef, Adrien Chauvin, Su Yan, Wenjiang Li, Carla Bittencourt, “Hydrogen Ion Irradiation Effect on the Luminescence of MoS2 Nanoflowers”, Physica Status Solidi (a), 220:2 (2023)  crossref
    3. Ioana Marica, Fran Nekvapil, Maria Ștefan, Cosmin Farcău, Alexandra Falamaș, “Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review”, Beilstein J. Nanotechnol., 13 (2022), 472  crossref
    4. Peter Švančárek, Robert Klement, Wolfgang Wisniewski, Milan Parchovianský, Dušan Galusek, “ZnO-doped Y2O3 ceramic: A prospective Warm White Light Fluorescent Material”, Journal of the European Ceramic Society, 42:5 (2022), 2478  crossref
    5. Jyoti Kashyap, Manju Rani, Udaibir Singh, Avinashi Kapoor, “Surface texturisation for the reduction of light reflection in ZnO/Si heterojunction”, International Journal of Sustainable Energy, 41:10 (2022), 1399  crossref
    6. Satyanarayana Reddy S, Lokesha H. S, Nagabhushana K. R, “Fabrication of spectroscopic characterization techniques using an optical fiber-based spectrometer”, Review of Scientific Instruments, 92:9 (2021)  crossref
    7. E.V. Golyeva, E.I. Vaishlia, B.V. Chernovets, I.E. Kolesnikov, “Luminescent properties of YVO4:Eu3+ ceramic phosphors according to Li+ content”, Materials Today: Proceedings, 30 (2020), 365  crossref
    8. Daisuke Nakauchi, Kenji Shinozaki, Noriaki Kawaguchi, Takayuki Yanagida, “Photo-, radio- and thermo- luminescence properties of Eu-doped BaSi2O5 glass-ceramics”, Optik, 185 (2019), 812  crossref
    9. V. V. Titov, A. A. Lisachenko, I. Kh. Akopyan, M. È. Labzovskaya, B. V. Novikov, “Long-lived photocatalysis centers created in ZnO via resonant exciton excitation”, Phys. Solid State, 61:11 (2019), 2134–2138  mathnet  mathnet  crossref  crossref
    10. P. A. Rodnyi, K. A. Chernenko, I. D. Venevtsev, “Mechanisms of ZnO luminescence in the visible spectral region”, Optics and Spectroscopy, 125:3 (2018), 372–378  mathnet  mathnet  crossref  crossref
    11. Lijie Li, “On the double-band luminescence of ZnO nanoparticles”, EPL, 117:6 (2017), 67005  crossref
    12. Sergey Yu. Sokovnin, Vladislav G. Il'ves, Vladimir R. Khrustov, Mikhail G. Zuev, “Investigation of properties of ZnO ceramics sintered from ZnO-Zn nanopowders produced by pulsed electron beam evaporation”, Ceramics International, 43:14 (2017), 10637  crossref
    13. Larisa Grigorjeva, Aleksejs Zolotarjovs, Sergej Yu Sokovnin, Donats Millers, Krisjanis Smits, Vladislav G. Il`ves, “Radioluminescence, thermoluminescence and dosimetric properties of ZnO ceramics”, Ceramics International, 43:8 (2017), 6187  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025