Abstract:
The internal structure of empty porous micro- and macroporous magnetic glasses and the related nanocomposites containing NaNO$_{2}$ and KNO$_{3}$ embedded in pores of the glasses has been investigated using small-angle neutron scattering. The characteristic sizes of magnetite particles in matrices and the sizes of nanoparticles embedded in ferroelectric materials have been estimated. It has been shown that, for microporous glasses in the momentum transfer range 0.35 nm$^{-1}$$<Q<$ 1.7 nm$^{-1}$, the dependence of the small-angle neutron scattering intensity on the momentum transfer has two characteristic regions: the first region corresponds well to the Porod’s law $Q^{-4}$ (smooth surface), and the second region is consistent with the mass fractal reflecting the internal structure of channels in the microporous glass. For macroporous glasses over the entire momentum transfer range 0.35 nm$^{-1}$$<Q<$ 1.7 nm$^{-1}$, the scattering intensity is described by the dependence $I(Q)\sim Q^{-n}$ c $\alpha$ = 3.96 $\pm$ 0.02; i.e., in these glasses, there is a system of channels with sufficiently smooth surfaces.
Citation:
A. A. Naberezhnov, V. Ryukhtin, A. A. Sysoeva, “Internal structure of magnetic porous glasses and the related ferroelectric nanocomposites”, Fizika Tverdogo Tela, 59:2 (2017), 367–372; Phys. Solid State, 59:2 (2017), 378–384
\Bibitem{NabRyuSys17}
\by A.~A.~Naberezhnov, V.~Ryukhtin, A.~A.~Sysoeva
\paper Internal structure of magnetic porous glasses and the related ferroelectric nanocomposites
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 2
\pages 367--372
\mathnet{http://mi.mathnet.ru/ftt9689}
\crossref{https://doi.org/10.21883/FTT.2017.02.44064.124}
\elib{https://elibrary.ru/item.asp?id=29006123}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 2
\pages 378--384
\crossref{https://doi.org/10.1134/S1063783417020196}
Linking options:
https://www.mathnet.ru/eng/ftt9689
https://www.mathnet.ru/eng/ftt/v59/i2/p367
This publication is cited in the following 4 articles:
Haijuan Ding, Yaping Fan, Hairong Dong, Chengtao Zhao, Debiao Zhao, Haichang Zhang, “Progress of Laser Processing Technology in Ferroelectric Nanocomposites”, Advances in Materials Science and Engineering, 2022 (2022), 1
A S Mazur, I V Pleshakov, A V Khudyakov, E E Bibik, Yu I Kuzmin, “NMR investigation of iron-containing magnetically ordered nanomaterial used for preparing of magnetic fluid”, J. Phys.: Conf. Ser., 1326:1 (2019), 012009
S. Baryshnikov, A. Milinskiy, E. Stukova, “Dielectric properties of the ferroelectric composites [AgNa(NO2)2]0.9/[NaNO2]0.1 and [AgNa(NO2)2]0.9/[BaTiO3]0.1”, Ferroelectrics, 536:1 (2018), 91
Ekaterina A. Mikhaleva, Igor N. Flerov, Andrey V. Kartashev, Mikhail V. Gorev, Maxim S. Molokeev, Evgeniy V. Bogdanov, Vitaliy S. Bondarev, Leonid N. Korotkov, Ewa Rysiakiewicz-Pasek, “Effect of restricted geometry and external pressure on the phase transitions in ammonium hydrogen sulfate confined in a nanoporous glass matrix”, J Mater Sci, 53:17 (2018), 12132