Abstract:
This paper presents some results of studying the Poole–Frenkel effect with allowance for shielding in layered GaSe and GaTe single crystals and their solid solutions in strong electrical fields of up to 105 V/cm at temperatures of 103–250 K. According to the relationship (σσ(0))1/2lgσσ(0)=E√ε4πn(0)kT, there exists a linear dependence between (σσ(0))1/2lgσσ(0) and the electrical field E (σ is the electrical conductivity in strong electrical fields, and σ(0) is the electrical conductivity in the ohmic region). The slopes of these lines have been determined at different temperatures (103–250 K) by estimating the concentration of current carriers n(0) = 3 × 1013–5 × 1015 cm−3 in the ohmic region of the electrical conductivity of solid solutions of layered GaSexTe1−x single crystals (x = 1.00, 0.95, 0.90, 0.80, 0.70, 0.30, 0.20, 0.10, 0).
Citation:
B. H. Tagiev, O. B. Tagiyev, “Electrical conductivity in single crystals of GaSexTe1−x solid solutions in strong electrical fields”, Fizika Tverdogo Tela, 59:6 (2017), 1060–1064; Phys. Solid State, 59:6 (2017), 1080–1084
\Bibitem{TagTag17}
\by B.~H.~Tagiev, O.~B.~Tagiyev
\paper Electrical conductivity in single crystals of GaSe$_{x}$Te$_{1-x}$ solid solutions in strong electrical fields
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 6
\pages 1060--1064
\mathnet{http://mi.mathnet.ru/ftt9544}
\crossref{https://doi.org/10.21883/FTT.2017.06.44477.037}
\elib{https://elibrary.ru/item.asp?id=29405110}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 6
\pages 1080--1084
\crossref{https://doi.org/10.1134/S1063783417060270}
Linking options:
https://www.mathnet.ru/eng/ftt9544
https://www.mathnet.ru/eng/ftt/v59/i6/p1060
This publication is cited in the following 2 articles:
S S Pavlova, M K Kotvanova, I A Sologubova, E L Telitsyna, “Promising oxide nanomaterials with regulated electrical conductivity”, J. Phys.: Conf. Ser., 1134 (2018), 012056
A. V. Kosobutsky, S. Yu. Sarkisov, “Influence of size effects on the electronic structure of hexagonal gallium telluride”, Phys. Solid State, 60:9 (2018), 1686–1690