Abstract:
The melting processes of various Pt–Pd nanoparticles (binary alloy, core–shell, D⩽ 4.0 nm) with different percent platinum atom content are investigated via the molecular dynamics using the embedded atom method potential in order to establish the thermal stability of simulated particle structure. In accordance with the data obtained, the most thermally stable are Pt–Pd nanoalloys with a diameter above 2.0 nm and core–shell Pd@Pt particles. As is shown, heating of binary Pt–Pd cluster alloys with the particle diameters less than 2.0 nm may cause the transition to pentagonal symmetry structures and core–shell-like complex formations.
Citation:
I. V. Chepkasov, Yu. Ya. Gafner, M. A. Visotin, L. V. Redel', “A study of melting of various types of Pt–Pd nanoparticles”, Fizika Tverdogo Tela, 59:10 (2017), 2050–2055; Phys. Solid State, 59:10 (2017), 2076–2081
\Bibitem{CheGafVis17}
\by I.~V.~Chepkasov, Yu.~Ya.~Gafner, M.~A.~Visotin, L.~V.~Redel'
\paper A study of melting of various types of Pt--Pd nanoparticles
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 10
\pages 2050--2055
\mathnet{http://mi.mathnet.ru/ftt9442}
\crossref{https://doi.org/10.21883/FTT.2017.10.44979.042}
\elib{https://elibrary.ru/item.asp?id=30108741}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 10
\pages 2076--2081
\crossref{https://doi.org/10.1134/S1063783417100109}
Linking options:
https://www.mathnet.ru/eng/ftt9442
https://www.mathnet.ru/eng/ftt/v59/i10/p2050
This publication is cited in the following 25 articles:
Gennady Poletaev, Roman Rakitin, Yuriy Bebikhov, Alexander Semenov, “Molecular dynamics study of melting initiation at tilt grain boundaries depending on their misorientation angle in aluminum”, Phys. Scr., 100:1 (2025), 015988
Jose Brito Correia, Ana Isabel de Sá, “Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys”, Crystals, 15:1 (2025), 53
Gennady Poletaev, Andrey Sannikov, Yuriy Bebikhov, Alexander Semenov, “Molecular dynamics study of melting and crystallization of nickel nanoparticles with carbon impurity”, Molecular Simulation, 2024, 1
Longchao Zhuo, Qinghao Wang, Jiacheng Sun, Bingqing Chen, Samuel Lin, Zhixin Gao, “Size-dependent thermal properties and sintering behaviors of silver nanoparticles: insights from molecular dynamics simulation”, Appl. Phys. A, 130:6 (2024)
V. M. Samsonov, A. A. Romanov, I. V. Talyzin, D. V. Zhigunov, V. V. Puitov, “Surface Segregation in Binary Metallic Nanoparticles: Atomistic Simulation and Thermodynamic Modeling”, Bull. Russ. Acad. Sci. Phys., 88:5 (2024), 739
Elena V. Dudysheva, Galina S. Shiling, Pavel V. Zakharov, 2024 7th International Conference on Information Technologies in Engineering Education (Inforino), 2024, 1
Gennady M. Poletaev, Andrey V. Sannikov, Viktor V. Kovalenko, “Effect of carbon impurity on the temperatures of melting and crystallization of nickel nanoparticles: molecular dynamic simulation”, CPM, 26:2 (2024), 274
Gennady M. Poletaev, Viktor V. Kovalenko, “Study of devitrification of amorphous titanium nanoparticles in vacuum and in an aluminum shell: molecular dynamics modeling”, CPM, 26:1 (2024), 50
V. M. Samsonov, A. A. Romanov, I. V. Talyzin, D. V. Zhigunov, V. V. Puitov, “Surface segregation in binary metallic nanoparticles: atomistic and thermodynamic simulations”, Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ, 88:5 (2024), 767
Vladimir Samsonov, Alexander Romanov, Igor Talyzin, Alexander Lutsay, Dmitriy Zhigunov, Vladimir Puytov, “Puzzles of Surface Segregation in Binary Pt–Pd Nanoparticles: Molecular Dynamics and Thermodynamic Simulations”, Metals, 13:7 (2023), 1269
Ilya V. Chepkasov, Ivan S. Zamulin, Viktor S. Baidyshev, Alexander G. Kvashnin, “Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO”, Phys. Chem. Chem. Phys., 25:48 (2023), 33031
Ilya V. Chepkasov, Viktor S. Baidyshev, Alexander G. Kvashnin, “Structure-driven tuning of O and CO adsorption on AuCu nanoparticles: A density functional theory study”, Phys. Rev. B, 108:20 (2023)
Tuan Tran Quoc, Van Cao Long, Ştefan Ţălu, Dung Nguyen Trong, “Molecular Dynamics Study on the Crystallization Process of Cubic Cu–Au Alloy”, Applied Sciences, 12:3 (2022), 946
V. M. Samsonov, A. A. Romanov, A. Yu. Kartoshkin, I. V. Talyzin, V. V. Puytov, “Embedding functions for Pt and Pd: recalculation and verification on properties of bulk phases, Pt, Pd, and Pt–Pd nanoparticles”, Appl. Phys. A, 128:9 (2022)
G. M. Poletaev, A. A. Sitnikov, V. I. Yakovlev, V. Yu. Filimonov, “Melting Point of Ti, Ti3Al, TiAl, and TiAl3 Nanoparticles Versus Their Diameter in Vacuum and Liquid Aluminum: Molecular Dynamics Investigation”, J. Exp. Theor. Phys., 134:2 (2022), 183
Mario Bahr, Uwe Petasch, Heike Heymer, Björn Matthey, Alexander Michaelis, Gennadi Zikoridse, SAE Technical Paper Series, 1, SAE Technical Paper Series, 2021
Gennady Poletaev, Alexander Sitnikov, Valery Filimonov, “Melting temperature of Ti and TiAl nanoparticles in vacuum and in Al matrix depending on their diameter: molecular dynamics study”, Lett. Mater., 11:2 (2021), 204
M. Novaković, M. Popović, P. Noga, D. Vaňa, Z. Rakočević, “Formation of Au-Ag alloy nanoparticles in amorphous silicon using sequential ion implantation”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 471 (2020), 33
Rafael Mendoza-Pérez, Stephen Muhl, “Phase diagrams of refractory bimetallic nanoalloys”, J Nanopart Res, 22:10 (2020)
Maryam Azadeh, Movaffaq Kateb, Pirooz Marashi, “Determining phase transition using potential energy distribution and surface energy of Pd nanoparticles”, Computational Materials Science, 170 (2019), 109187