Abstract:
We present the data of studies on the structure, phase states, and magnetic properties of magnetic nanoparticles (MNPs) of magnesium ferrite spinel (MgFe$_{2}$O$_{4}$), synthesized by ultrasonic aerosols pyrolysis. Primary single-phase MNPs with an average size of 9.6, 11.5, and 14.0 nm, synthesized from precursors at concentrations of 0.06, 0.12, and 0.24 M, respectively, agglomerate into tightly aggregated spherical particles (secondary particles) with sizes of 206, 300, and 340 nm, respectively. Primary particles inside the spheres do not interact with each other and are in a superparamagnetic state. There is a layer on the surface of the particles, the magnetic structure of which differs from the structure of the inner part of the MNP; this is explained by the formation of a canted spin structure or a spin glass state in the surface layer of the MNPs. MgFe$_{2}$O$_{4}$ nanospheres obtained from a precursor at a concentration of 0.06 M are most promising as valid sources of heat in magnetic hyperthermia therapy.
Citation:
A. S. Kamzin, A. A. Valiullin, V. G. Semenov, Harinarayan Das, Naoki Wakiya, “Properties of MgFe$_{2}$O$_{4}$ nanoparticles synthesized by ultrasonic aerosol pyrolysis for biomedical applications”, Fizika Tverdogo Tela, 61:6 (2019), 1175–1183; Phys. Solid State, 61:6 (2019), 1113–1121
\Bibitem{KamValSem19}
\by A.~S.~Kamzin, A.~A.~Valiullin, V.~G.~Semenov, Harinarayan~Das, Naoki~Wakiya
\paper Properties of MgFe$_{2}$O$_{4}$ nanoparticles synthesized by ultrasonic aerosol pyrolysis for biomedical applications
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 6
\pages 1175--1183
\mathnet{http://mi.mathnet.ru/ftt8798}
\crossref{https://doi.org/10.21883/FTT.2019.06.47696.354}
\elib{https://elibrary.ru/item.asp?id=39133785}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 6
\pages 1113--1121
\crossref{https://doi.org/10.1134/S1063783419060076}
Linking options:
https://www.mathnet.ru/eng/ftt8798
https://www.mathnet.ru/eng/ftt/v61/i6/p1175
This publication is cited in the following 4 articles:
R.N. Kumbhar, T.J. Shinde, S.A. Kamble, V.L. Mathe, J.S. Ghodake, “Influence of rare earth ions (Sm3+, Dy3+) substitution on magnetic and microwave performance of magnesium ferrite”, Physica B: Condensed Matter, 619 (2021), 413161
D. A. Balaev, A. A. Krasikov, A. D. Balaev, S. V. Stolyar, V. P. Ladygina, R. S. Iskhakov, “Features of relaxation of the remanent magnetization of antiferromagnetic nanoparticles by the example of ferrihydrite”, Phys. Solid State, 62:7 (2020), 1172–1178
D.A. Balaev, A.A. Krasikov, S.I. Popkov, A.A. Dubrovskiy, S.V. Semenov, D.A. Velikanov, V.L. Kirillov, O.N. Martyanov, “Features of the quasi-static and dynamic magnetization switching in NiO nanoparticles: Manifestation of the interaction between magnetic subsystems in antiferromagnetic nanoparticles”, Journal of Magnetism and Magnetic Materials, 515 (2020), 167307
S. I. Popkov, A. A. Krasikov, S. V. Semenov, A. A. Doubrovskii, S. S. Yakushkin, V. L. Kirillov, O. N. Mart'yanov, D. A. Balaev, “General regularities and differences in the behavior of the dynamic magnetization switching of ferrimagnetic (CoFe$_2$O$_4$) and antiferromagnetic (NiO) nanoparticles”, Phys. Solid State, 62:9 (2020), 1518–1524