Abstract:
The phase transitions and critical phenomena of the three-dimensional antiferromagnetic Heisenberg model on a body-centered cubic lattice with next and next-nearest neighbor interactions are studied using the replica Monte Carlo algorithm. Investigations are carried out for relations of exchange interaction values of next and next-nearest neighbors in the range of k values [0.0, 0.6]. A behavior of phase transitions is analyzed by the histogram method. A whole set of main static critical exponents is estimated within the finite-size scaling theory. The universality class of the model critical behavior is shown to be unchanged in the considered interval of k value.
Citation:
A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, M. K. Badiev, M. K. Mazagaeva, “The study of phase transitions and critical phenomena of the Heisenberg model on a body-centered cubic lattice”, Fizika Tverdogo Tela, 61:6 (2019), 1170–1174; Phys. Solid State, 61:6 (2019), 1107–1112
\Bibitem{MurRamKur19}
\by A.~K.~Murtazaev, M.~K.~Ramazanov, D.~R.~Kurbanova, M.~A.~Magomedov, M.~K.~Badiev, M.~K.~Mazagaeva
\paper The study of phase transitions and critical phenomena of the Heisenberg model on a body-centered cubic lattice
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 6
\pages 1170--1174
\mathnet{http://mi.mathnet.ru/ftt8797}
\crossref{https://doi.org/10.21883/FTT.2019.06.47695.373}
\elib{https://elibrary.ru/item.asp?id=39133784}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 6
\pages 1107--1112
\crossref{https://doi.org/10.1134/S1063783419060143}
Linking options:
https://www.mathnet.ru/eng/ftt8797
https://www.mathnet.ru/eng/ftt/v61/i6/p1170
This publication is cited in the following 3 articles:
M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, M. K. Mazagaeva, “Phase transformations and thermodynamic properties of the Potts model with q = 4 on a hexagonal lattice with interactions of next-nearest neighbors”, Phys. Solid State, 62:3 (2020), 499–503
M. K. Ramazanov, A. K. Murtazaev, “Computer modeling of phase transformations and critical properties of the frustrated Heisenberg model for a cubic lattice”, Phys. Solid State, 62:6 (2020), 976–981
A. K. Murtazaev, M. K. Ramazanov, M. K. Badiev, “Critical properties in the Ising model on a triangular lattice with the variable interlayer exchange interaction”, Phys. Solid State, 61:10 (2019), 1854–1859