Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2020, Volume 62, Issue 3, Pages 381–385
DOI: https://doi.org/10.21883/FTT.2020.03.49000.606
(Mi ftt8466)
 

Dielectrics

Hyperfine interactions in copper lattice sites of antiferromagnetic compounds representing the analogues of superconducting copper metal-oxide compounds

E. I. Terukovab, A. V. Marchenkoc, F. S. Nasredinovd, A. A. Levina, A. A. Luzhkovc, P. P. Sereginc

a Ioffe Institute, St. Petersburg
b Saint Petersburg Electrotechnical University "LETI"
c Herzen State Pedagogical University of Russia, St. Petersburg
d Peter the Great St. Petersburg Polytechnic University
Abstract: Emission $^{61}$Cu($^{61}$Ni) Mössbauer spectra of dielectric metal-oxide compounds of divalent copper with molecular formulas Ca$_{1-x}$Sr$_{x}$CuO$_{2}$, Ca$_{2}$CuO$_{2}$Cl$_{2}$, SrCuO$_{2}$, Sr$_{2}$CuO$_{2}$Cl$_{2}$, YBa$_{2}$Cu$_{3}$O$_{7-x}$, La$_{2-x}$Sr$_{x}$CuO$_{4}$, Nd$_{2-x}$Ce$_{x}$CuO$_{4}$ correspond to the quadrupole and Zeeman interactions of the 61Ni nuclei with local fields at the copper lattice sites, whereas the spectra of superconducting metal-oxide complexes correspond to the interaction of the quadrupole moment of the $^{61}$Ni nuclei with the tensor of the electric field gradient (EFG). For both groups of metal oxides, linear dependences of the quadrupole interaction constants on the calculated values of the principal component of the lattice EFG tensor in the copper lattice sites are observed both on the $^{61}$Ni nuclei (data of the emission Mössbauer spectroscopy on the $^{61}$Cu($^{61}$Ni) isotopes) and on the $^{63}$Cu nuclei (data of the nuclear magnetic resonance on the $^{63}$Cu isotope). This fact is explained by the constant values of the valence component of the EFG for both the $^{61}$Ni$^{2+}$ and $^{63}$Cu$^{2+}$ probes in all metal-oxide complexes of divalent copper.
Keywords: antiferromagnetics, high temperature superconductors. emission Mössbauer spectroscopy, NMR, electric field gradient tensor.
Received: 14.10.2019
Revised: 14.10.2019
Accepted: 29.10.2019
English version:
Physics of the Solid State, 2020, Volume 62, Issue 3, Pages 431–435
DOI: https://doi.org/10.1134/S1063783420030245
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. I. Terukov, A. V. Marchenko, F. S. Nasredinov, A. A. Levin, A. A. Luzhkov, P. P. Seregin, “Hyperfine interactions in copper lattice sites of antiferromagnetic compounds representing the analogues of superconducting copper metal-oxide compounds”, Fizika Tverdogo Tela, 62:3 (2020), 381–385; Phys. Solid State, 62:3 (2020), 431–435
Citation in format AMSBIB
\Bibitem{TerMarNas20}
\by E.~I.~Terukov, A.~V.~Marchenko, F.~S.~Nasredinov, A.~A.~Levin, A.~A.~Luzhkov, P.~P.~Seregin
\paper Hyperfine interactions in copper lattice sites of antiferromagnetic compounds representing the analogues of superconducting copper metal-oxide compounds
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 3
\pages 381--385
\mathnet{http://mi.mathnet.ru/ftt8466}
\crossref{https://doi.org/10.21883/FTT.2020.03.49000.606}
\elib{https://elibrary.ru/item.asp?id=42776715}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 3
\pages 431--435
\crossref{https://doi.org/10.1134/S1063783420030245}
Linking options:
  • https://www.mathnet.ru/eng/ftt8466
  • https://www.mathnet.ru/eng/ftt/v62/i3/p381
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:46
    Full-text PDF :20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024