Abstract:
The formation of unoccupied electronic states and the boundary potential barrier during thermal deposition of tetracyanoquinodimethane (TCNQ) films to 7 nm in thickness on a (SiO2)n-Si surface has been studied. The electronic characteristics of the surface under study are measured by the total current spectroscopy (TCS) using a testing electron beam with energies from 5 to 20 eV above the Fermi level. The formation of a boundary potential barrier in the (SiO2)n-Si/TCNQ structure is accompanied by an increase in the work function of the surface from 4.2 ± 0.1 to 4.7 ± 0.1 eV. Using the results of the TCS experiments, the DOUS dependences of the TCNQ films have been built. To analyze the experimental DOUS dependences, the orbital energies of the TCNQ molecules are calculated by the density functional theory (DFT) at the B3LYP/6-31G(d) level with subsequent correction and the inclusion of the polarization energy of the condensed medium. In the energy range indicated above, DOUS of the TCNQ films has four main maxima. The DOUS maximum at energy 7.0 eV above EF is predominantly formed by π∗ orbitals. Three DOUS maxima in the energy range from 8.0 to 20 eV above EF are formed by approximately the same amount of the π∗ and σ∗ orbitals.
Keywords:
conjugated organic molecules, ultrathin films, electronic properties, low-energy electron spectroscopy, calculations using density functional theory, density of states.
The TCS experiments were supported by the Russian Science Foundation, project no. 19-13-00021. The theoretical analysis of the energies of molecular orbitals was supported by the Russian Foundation for Basic Research (project no. 18-03-00020 and 18-03-00179).
Citation:
A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, V. S. Sobolev, Yu. A. Panina, S. A. Pshenichnyuk, N. L. Asfandiarov, B. Handke, “Propagation of low-energy electrons and the density of unoccupied states in ultrathin TCNQ layers on the oxidized silicon surface”, Fizika Tverdogo Tela, 62:7 (2020), 1105–1110; Phys. Solid State, 62:7 (2020), 1245–1250
\Bibitem{KomLazGer20}
\by A.~S.~Komolov, E.~F.~Lazneva, N.~B.~Gerasimova, V.~S.~Sobolev, Yu.~A.~Panina, S.~A.~Pshenichnyuk, N.~L.~Asfandiarov, B.~Handke
\paper Propagation of low-energy electrons and the density of unoccupied states in ultrathin TCNQ layers on the oxidized silicon surface
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1105--1110
\mathnet{http://mi.mathnet.ru/ftt8382}
\crossref{https://doi.org/10.21883/FTT.2020.07.49481.048}
\elib{https://elibrary.ru/item.asp?id=43800536}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1245--1250
\crossref{https://doi.org/10.1134/S1063783420070112}
Linking options:
https://www.mathnet.ru/eng/ftt8382
https://www.mathnet.ru/eng/ftt/v62/i7/p1105
This publication is cited in the following 4 articles:
A. S. Komolov, E. F. Lazneva, V. S. Sobolev, S. A. Pshenichnyuk, N. L. Asfandiarov, E. V. Zhizhin, D. A. Pudikov, E. A. Dubov, I. A. Pronin, F. Dj. Akbarova, U. B. Sharopov, “Density of Unoccupied Electronic States of the Ultrathin Layers of Dibromo-Bianthracene on the Surface of Layer-by-Layer Grown ZnO”, Crystallogr. Rep., 69:1 (2024), 109
A. S. Komolov, E. F. Lazneva, V. S. Sobolev, S. A. Pshenichnyuk, N. L. Asfandiarov, E. V. Zhizhin, D. A. Pudikov, E. A. Dubov, I. A. Pronin, F. Dzh. Akbarova, U. B. Sharopov, “Plotnost nezapolnennykh elektronnykh sostoyanii sverkhtonkikh sloev dibromo-biantratsena na poverkhnosti posloino vyraschennogo ZnO”, Kristallografiâ, 69:1 (2024), 134
A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, V. S. Sobolev, S. A. Pshenichnyuk, N. L. Asfandiarov, V. A. Kraikin, B. Handke, “Unoccupied electronic states and potential barrier in films of substituted diphenylphthalides on the surface of highly ordered pyrolytic graphite”, Phys. Solid State, 63:2 (2021), 362–367
Stanislav A. Pshenichnyuk, Alberto Modelli, Nail L. Asfandiarov, Rustam G. Rakhmeyev, Aleksey M. Safronov, Mansaf M. Tayupov, Alexei S. Komolov, “Microsecond dynamics of molecular negative ions formed by low-energy electron attachment to fluorinated tetracyanoquinodimethane”, The Journal of Chemical Physics, 155:18 (2021)