Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2020, Volume 62, Issue 7, Pages 1059–1063
DOI: https://doi.org/10.21883/FTT.2020.07.49473.036
(Mi ftt8374)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ferroelectricity

Effect of nanoconfinement on the kinetics of phase transitions in organic ferroelectric DIPAI

A. Yu. Milinskiya, S. V. Baryshnikova, E. V. Charnayab, I. V. Egorovaa, N. I. Uskovabc

a Blagoveshchensk State Pedagogical University
b Saint Petersburg State University
c Saint-Petersburg State University of Aerospace Instrumentation
Abstract: Linear and nonlinear dielectric properties of new organic ferroelectric diisopropylammonia iodide (DIPAI) introduced into porous aluminum oxide films have been studied in comparison with the properties of a bulk DIPAI. In DIPAI, in pores 300 and 60 nm in diameter, it has been found that the ferroelectric phase forms on heating and on cooling in the temperature range between two structural phase transitions above room temperature. No marked temperature hysteresis is observed for both the phase transitions. The boundaries of the intermediate polar phase in the nanostructured DIPAI is shown to shift to lower temperatures as the pore size decreases. For the bulk DIPAI, two structural transitions are observed on heating with the formation of an intermediate polar phase and only one transition below which the ferroelectricity forms is observed on cooling. This transition temperature is significantly lower than the corresponding temperature on heating. It is assumed that the observed differences of the phase transition in DIPAI in pores and in the bulk DIPAI are related to an acceleration of the kinetics of the phase transitions in the nanoconfinement conditions.
Keywords: organic ferroelectric, diisopropylammonium iodide, DIPAI, nanoconfinement, phase transition kinetics, dielectric constant, third harmonic generation.
Funding agency Grant number
Russian Foundation for Basic Research 19-29-03004
This work was supported by the Russian Foundation for Basic Research, project no. 19-29-03004.
Received: 19.02.2020
Revised: 19.02.2020
Accepted: 20.02.2020
English version:
Physics of the Solid State, 2020, Volume 62, Issue 7, Pages 1199–1203
DOI: https://doi.org/10.1134/S1063783420070161
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Milinskiy, S. V. Baryshnikov, E. V. Charnaya, I. V. Egorova, N. I. Uskova, “Effect of nanoconfinement on the kinetics of phase transitions in organic ferroelectric DIPAI”, Fizika Tverdogo Tela, 62:7 (2020), 1059–1063; Phys. Solid State, 62:7 (2020), 1199–1203
Citation in format AMSBIB
\Bibitem{MilBarCha20}
\by A.~Yu.~Milinskiy, S.~V.~Baryshnikov, E.~V.~Charnaya, I.~V.~Egorova, N.~I.~Uskova
\paper Effect of nanoconfinement on the kinetics of phase transitions in organic ferroelectric DIPAI
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1059--1063
\mathnet{http://mi.mathnet.ru/ftt8374}
\crossref{https://doi.org/10.21883/FTT.2020.07.49473.036}
\elib{https://elibrary.ru/item.asp?id=43800527}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1199--1203
\crossref{https://doi.org/10.1134/S1063783420070161}
Linking options:
  • https://www.mathnet.ru/eng/ftt8374
  • https://www.mathnet.ru/eng/ftt/v62/i7/p1059
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024