Abstract:
Samples of polycrystalline yttrium-iron garnet synthesized using radiation-thermal sintering and ceramic processing have been studied by the Mössbauer spectroscopy method. The best decomposition of the Mössbauer spectroscopy spectra of the research objects, which is a simulation of the experimental spectrum with five sextets, has been selected. An additional fifth sextet is caused by Fe3+ ions, which are surrounded by oxygen vacancies leading to distortion of Fe-tetrahedra, which is reflected in an increase in the quadrupole splitting of Fe3+. An increase in the density of s-electrons on Fe ions in distorted tetrahedra has been found, resulting in a decrease in the isomeric chemical shift δ of Fe ions to a value close to the δ value for Fe4+ ions. It has been shown that the optimal crystal structure is realized in Y3Fe5O12 polycrystals when they are sintered for 40–60 min in the temperature range of 1350–1400∘C by the radiation-thermal sintering method.
Citation:
V. G. Kostishin, V. V. Korovushkin, A. G. Nalogin, S. V. Sherbakov, I. M. Isaev, A. A. Alekseev, A. Yu. Mironovich, D. V. Salogub, “Features of the magnetic structure of Y3Fe5O12 polycrystals synthesized by radiation thermal sintering”, Fizika Tverdogo Tela, 62:7 (2020), 1028–1035; Phys. Solid State, 62:7 (2020), 1156–1164
\Bibitem{KosKorNal20}
\by V.~G.~Kostishin, V.~V.~Korovushkin, A.~G.~Nalogin, S.~V.~Sherbakov, I.~M.~Isaev, A.~A.~Alekseev, A.~Yu.~Mironovich, D.~V.~Salogub
\paper Features of the magnetic structure of Y$_{3}$Fe$_{5}$O$_{12}$ polycrystals synthesized by radiation thermal sintering
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1028--1035
\mathnet{http://mi.mathnet.ru/ftt8369}
\crossref{https://doi.org/10.21883/FTT.2020.07.49467.646}
\elib{https://elibrary.ru/item.asp?id=43800522}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1156--1164
\crossref{https://doi.org/10.1134/S1063783420070124}
Linking options:
https://www.mathnet.ru/eng/ftt8369
https://www.mathnet.ru/eng/ftt/v62/i7/p1028
This publication is cited in the following 6 articles:
Elena N. Lysenko, Vitaly A. Vlasov, Evgeniy V. Nikolaev, Anatoliy P. Surzhikov, Mikhail V. Korobeynikov, “Microstructure and magnetization study of Li and Li–Zn ferrites synthesized by an electron beam”, Materials Chemistry and Physics, 302 (2023), 127722
V. V. Izyurov, A. P. Nosov, I. V. Gribov, M. A. Andreeva, “Magnetic Phase Transitions in Ultrathin YFeO3 Films According
to Synchrotron Mössbauer Reflectometry Data”, Fizika metallov i metallovedenie, 124:7 (2023), 566
E. N. Lysenko, V. A. Vlasov, A. P. Surzhikov, S. A. Ghyngazov, “Magnetization and Curie Point of LiZn Ferrite Synthesized by Electron Beam Heating of Mechanically Activated Reagents”, Russ Phys J, 2023
V. V. Izyurov, A. P. Nosov, I. V. Gribov, M. A. Andreeva, “Magnetic Phase Transitions in Ultrathin YFeO3 Films According to Synchrotron Mössbauer Reflectometry Data”, Phys. Metals Metallogr., 124:7 (2023), 643
M.S. Nikova, V.A. Tarala, F.F. Malyavin, I.S. Chikulina, D.S. Vakalov, A.A. Kravtsov, S.O. Krandievsky, V.A. Lapin, E.V. Medyanik, L.V. Kozhitov, S.V. Kuznetsov, “Sintering and microstructure evolution of Er1.5Y1.5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites”, Journal of the European Ceramic Society, 42:5 (2022), 2464
V. G. Kostishin, R. I. Shakirzyanov, A. G. Nalogin, S. V. Sherbakov, I. M. Isaev, M. A. Nemirovich, M. A. Mikhailenko, M. V. Korobeinikov, M. P. Mezenceva, D. V. Salogub, “Electrical and dielectric properties of yttrium–iron ferrite garnet polycrystals grown by the radiation–thermal sintering technology”, Phys. Solid State, 63:3 (2021), 435–441