Loading [MathJax]/jax/output/SVG/config.js
Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2021, Volume 63, Issue 2, Pages 191–198
DOI: https://doi.org/10.21883/FTT.2021.02.50462.209
(Mi ftt8174)
 

This article is cited in 13 scientific papers (total in 13 papers)

Metals

Changes in the properties of iron during BCC-FCC phase transition

M. N. Magomedov

Institute for Geothermal and Renewable Energy, Branch of the Joint Institute for High Temperatures, Russian Academy of Sciences, Makhachkala, Russia
Abstract: Using the previously developed method for calculating crystal properties based on the Mie–Lennard-Jones pair potential, the thermodynamic properties of the BCC and FCC phases of iron at the temperature of the polymorphic BCC-FCC phase transition are calculated. 23 properties of iron and their changes during the BCC-FCC transition are calculated. Calculations have shown that properties such as the Gruneisen parameter, the coefficient of thermal expansion, and the heat capacity practically do not change during the BCC-FCC transition. The elastic modulus, specific entropy, Poisson's ratio, and specific surface energy change in the same way as the molar volume, i.e. within 1%. The Debye temperature and its pressure derivative decrease at the BCC-FCC transition in the same way as the distance between the centers of the nearest atoms increases, i.e. within 2–3%. Based on the analysis of experimental data known from the literature, it is shown that even relatively accurately measured parameters such as the coefficient of thermal expansion and elastic modulus are measured with an error exceeding the values of jumps in these parameters at the BCC-FCC transition. It is indicated that amorphization or nanostructuring of a certain portion of iron during the BCC-FCC transition can contribute to changes in the properties of iron during this phase transition.
Keywords: iron, interatomic potential, bcc and fcc structure, polymorphic transition.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-11013_мк
Russian Academy of Sciences - Federal Agency for Scientific Organizations 2-13
This work was supported by the Russian Foundation for Basic Research (project no. 18-29-11013_mk) and the Presidium of the Russian Academy of Sciences (program no. 6, project 2-13).
Received: 30.09.2020
Revised: 07.10.2020
Accepted: 08.10.2020
English version:
Physics of the Solid State, 2021, Volume 63, Issue 2, Pages 215–222
DOI: https://doi.org/10.1134/S1063783421020165
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. N. Magomedov, “Changes in the properties of iron during BCC-FCC phase transition”, Fizika Tverdogo Tela, 63:2 (2021), 191–198; Phys. Solid State, 63:2 (2021), 215–222
Citation in format AMSBIB
\Bibitem{Mag21}
\by M.~N.~Magomedov
\paper Changes in the properties of iron during BCC-FCC phase transition
\jour Fizika Tverdogo Tela
\yr 2021
\vol 63
\issue 2
\pages 191--198
\mathnet{http://mi.mathnet.ru/ftt8174}
\crossref{https://doi.org/10.21883/FTT.2021.02.50462.209}
\elib{https://elibrary.ru/item.asp?id=44846489}
\transl
\jour Phys. Solid State
\yr 2021
\vol 63
\issue 2
\pages 215--222
\crossref{https://doi.org/10.1134/S1063783421020165}
Linking options:
  • https://www.mathnet.ru/eng/ftt8174
  • https://www.mathnet.ru/eng/ftt/v63/i2/p191
  • This publication is cited in the following 13 articles:
    1. Xiaowan Su, Jin Liu, Yongsheng Zhou, Lianjie Man, Mingqiang Hou, “Inner Core Composition of the Moon and Ganymede Constrained by Thermal Equation of State of Fe0.99C0.01”, JGR Planets, 130:1 (2025)  crossref
    2. Mahach N. Magomedov, “Change in the melting temperature baric dependence during the transition from macro to nanocrystal”, Vacuum, 221 (2024), 112950  crossref
    3. Armando de Rezende, Michelle L. Pantoya, Daniel Tunega, Adelia J. A. Aquino, “Prediction of Phase Transition and Ignition Sensitivity of Ammonium Periodate”, J. Phys. Chem. C, 128:5 (2024), 2205  crossref
    4. Guixin Dai, Jian Li, Shiping Wu, Jihu Zhu, Xixi Huang, Qi Wang, Ruirun Chen, “Preparation method and growth mechanism of high-purity iron coatings on non-metallic surfaces”, Surfaces and Interfaces, 53 (2024), 104977  crossref
    5. S. V. Davydov, L. V. Spivak, N. E. Shchepina, “Calorimetric Studies of Polymorphic Iron Transformation”, Steel Transl., 54:2 (2024), 134  crossref
    6. M. N. Magomedov, “Changing the Parameters of Vacancy Formation and Self-Diffusion in Various Polymorphic Modifications of Iron”, Tech. Phys., 69:7 (2024), 2024  crossref
    7. Alexis Front, Georg Daniel Förster, Chu Chun Fu, Cyrille Barreteau, Hakim Amara, “Size effect on the structural and magnetic phase transformations of iron nanoparticles”, Nanoscale, 2024  crossref
    8. Ivan S. Pavlov, Anna G. Ivanova, Vladimir P. Filonenko, Igor P. Zibrov, Alexei E. Voloshin, Pavel V. Zinin, Alexander L. Vasiliev, “The rhombic hexecontahedron boron carbide microcrystals – crystal structure analysis”, Scripta Materialia, 222 (2023), 115023  crossref
    9. Mahach N. Magomedov, “Parameters of the vacancy formation and self-diffusion in the iron”, Journal of Physics and Chemistry of Solids, 172 (2023), 111084  crossref
    10. S. V. Davydov, “Iron Polymorphism. Part 3. Iron Polymorphic Transformation as a Phase Transformation Based on High-Temperature Solid-State Volume Photon Ionization”, Steel Transl., 53:11 (2023), 1023  crossref
    11. M.N. Magomedov, “Dependencies of the parameters of vacancy formation and self-diffusion in a single-component crystal on temperature and pressure”, Journal of Physics and Chemistry of Solids, 165 (2022), 110653  crossref
    12. M.N. Magomedov, “Changes in the structure of the Au–Fe alloy with a change in the concentration and with a decrease of the nanocrystal size”, Solid State Sciences, 120 (2021), 106721  crossref
    13. Teresa Martí-Rosselló, Paul Ray, Jun Li, Leo Lue, “Numerical Model for the Combustion of a Thermal Lance”, Ind. Eng. Chem. Res., 60:21 (2021), 7788  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025