Loading [MathJax]/jax/output/SVG/config.js
Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2021, Volume 63, Issue 2, Pages 165–190
DOI: https://doi.org/10.21883/FTT.2021.02.50461.212
(Mi ftt8173)
 

This article is cited in 19 scientific papers (total in 19 papers)

Reviews

X-ray diffraction topography methods (review)

V. V. Lider

FSRC "Crystallography and Photonics" RAS, Moscow, Russia
Abstract: The review describes various X-ray diffraction methods for visualizing defects in the crystal lattice, discusses the formation of diffraction contrast, and gives examples of the use of X-ray topography to study various structural defects of the crystal lattice.
Keywords: X-rays, diffraction, topography, diffraction contrast.
Funding agency
This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the State Task of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.
Received: 08.10.2020
Revised: 08.10.2020
Accepted: 20.10.2020
English version:
Physics of the Solid State, 2021, Volume 63, Issue 2, Pages 189–214
DOI: https://doi.org/10.1134/S1063783421020141
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Lider, “X-ray diffraction topography methods (review)”, Fizika Tverdogo Tela, 63:2 (2021), 165–190; Phys. Solid State, 63:2 (2021), 189–214
Citation in format AMSBIB
\Bibitem{Lid21}
\by V.~V.~Lider
\paper X-ray diffraction topography methods (review)
\jour Fizika Tverdogo Tela
\yr 2021
\vol 63
\issue 2
\pages 165--190
\mathnet{http://mi.mathnet.ru/ftt8173}
\crossref{https://doi.org/10.21883/FTT.2021.02.50461.212}
\elib{https://elibrary.ru/item.asp?id=44846488}
\transl
\jour Phys. Solid State
\yr 2021
\vol 63
\issue 2
\pages 189--214
\crossref{https://doi.org/10.1134/S1063783421020141}
Linking options:
  • https://www.mathnet.ru/eng/ftt8173
  • https://www.mathnet.ru/eng/ftt/v63/i2/p165
  • This publication is cited in the following 19 articles:
    1. Drmeyan H.R, Mkhitaryan S.A, Mnatsakanyan A.R, Mkrtchyan A.H, “A new method for increasing the resolution of diffraction patterns formed in X-ray single-crystal systems”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 170256  crossref
    2. H. R. Drmeyan, S. A. Mkhitaryan, A. H. Mkrtchyan, “A new technical solution to the problem of increasing the resolution of X-ray diffraction methods”, J Appl Crystallogr, 58:1 (2025), 71  crossref
    3. Martin Herms, Merve Pinar Kabukcuoglu, Carsten Hartmann, Markus Stöhr, Matthias Wagner, Elias Hamann, Daniel Hänschke, Carsten Richter, Thomas Straubinger, “Comparative Study of Residual Stress and Defects in Single‐Crystalline (0001) AlN Wafers by Scanning Infrared Depolarization and White‐Beam X‐ray Topography”, Physica Status Solidi (a), 2025  crossref
    4. Valli Kamala Laxmi Ramya Chittoory, Marketa Filipsika, Radim Bartoš, Marcela Králová, Petr Dzik, “Physicochemical Properties of Tungsten Trioxide Photoanodes Fabricated by Wet Coating of Soluble, Particulate, and Mixed Precursors”, Photochem, 4:1 (2024), 111  crossref
    5. H. R. Drmeyan, M. S. Vasilyan, “Investigation of the Effect of Defocusing on Interference Patterns Obtained in X-Ray Three-Block Interferometers”, Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ, 2024, no. 2, 101  crossref
    6. H. R. Drmeyan, M. S. Vasilyan, “Investigation of the Effect of Defocusing on the Interference Patterns Obtained Using Three-Block X-ray Interferometers”, J. Surf. Investig., 18:1 (2024), 229  crossref
    7. Christo Guguschev, Christian Hirschle, Kaspars Dadzis, Albert Kwasniewski, Michael Schulze, Leonard Schellkopf, Carsten Richter, “Application of laboratory micro X-ray fluorescence devices for X-ray topography”, J Appl Crystallogr, 57:3 (2024), 734  crossref
    8. Robert Albrecht, Radosław Swadźba, Kamil Gancarczyk, Dariusz Szeliga, The Minerals, Metals & Materials Series, Superalloys 2024, 2024, 492  crossref
    9. Mario Bähr, Christoph Wild, Wolfgang Knolle, Muhammad B. Javed, Jens Fuhrmann, Tobias Lühmann, Steffanie Reiss, Jan B. Meijer, Thomas Ortlepp, “Making Use of Low‐Cost High‐Pressure–High‐Temperature‐Diamond Materials for Industry‐Type Quantum Sensor Device Applications”, Physica Status Solidi (a), 2024  crossref
    10. I. A. Eliovich, I. I. Petrov, V. A. Korzhov, V. I. Akkuratov, Yu. V. Pisarevskii, Pis'ma v Zh. Èksper. Teoret. Fiz., 120:5 (2024), 377–381  mathnet  mathnet  crossref
    11. Ya. A. Eliovich, I. I. Petrov, V. A. Korzhov, V. I. Akkuratov, Yu. V. Pisarevsky, “New Possibilities for the Analysis of Vibrating Crystal Deformations Using X-ray Rocking Curve Imaging”, Jetp Lett., 120:5 (2024), 367  crossref
    12. Fatma Alt{\i}ntaş, Ahmet Koluman, “DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ”, Tekstil ve Mühendis, 31:136 (2024), 277  crossref
    13. D. A. Zolotov, V. E. Asadchikov, A. V. Buzmakov, V. V. Volkov, I. G. Dyachkova, P. V. Konarev, V. A. Grigorev, E. V. Suvorov, “New approaches to three-dimensional dislocation reconstruction in silicon from X-ray topo-tomography data”, Phys. Usp., 66:9 (2023), 943–950  mathnet  mathnet  crossref  crossref  isi  scopus
    14. Brian K. Tanner, “X-ray Diffraction Topography (Imaging) of Crystals Grown from Solution: A Short Review”, Crystal Growth & Design, 23:4 (2023), 3026  crossref
    15. Thomas Straubinger, Carsten Hartmann, Merve P. Kabukcuoglu, Martin Albrecht, Matthias Bickermann, Andrew Klump, Simon Bode, Elias Hamann, Simon Haaga, Mathias Hurst, Thomas Schröder, Daniel Hänschke, Carsten Richter, “Dislocation Climb in AlN Crystals Grown at Low-Temperature Gradients Revealed by 3D X-ray Diffraction Imaging”, Crystal Growth & Design, 23:3 (2023), 1538  crossref
    16. I. L. Shul'pina, E. V. Suvorov, I. A. Smirnova, T. S. Argunova, “Section Methods of X-Ray Diffraction Topography”, Tech. Phys., 68:12 (2023), 778  crossref
    17. Osami Sakata, Shinjiro Yagyu, “Visualizing local bending of lattice planes by extending two-azimuth synchrotron X-ray diffraction datasets to asymmetric reflection”, Science and Technology of Advanced Materials: Methods, 3:1 (2023)  crossref
    18. Akio Yoneyama, Kotaro Ishiji, Atsushi Sakaki, Yutaka Kobayashi, Masayuki Inaba, Kazunori Fukuda, Kumiko Konishi, Akio Shima, Daiko Takamatsu, “Three-dimensional micro-X-ray topography using focused sheet-shaped X-ray beam”, Sci Rep, 13:1 (2023)  crossref
    19. Valentin Akkuratov, Anton Kulikov, Yuri Pisarevsky, Alexander Blagov, Mikhail Kovalchuk, “In situ X-ray diffraction studies of deformation behavior of ferroelectric triglycine sulfate under uniaxial compression”, J Appl Crystallogr, 56:1 (2023), 247  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025