Abstract:
The characteristic values of the elastic polarizability tensor components of point defects in crystalline and amorphous copper, which determine changes in the elasticity tensor components upon introduction of defects, have been found using the molecular dynamics method. A relation of the elastic polarizability tensor with the main parameter of the interstitialcy theory, i.e., shear susceptibility, has been established. An analysis of the elastic polarizability tensors of defects in crystalline and amorphous copper has demonstrated that, in a noncrystalline structure, there are specific atomic configurations that under deformation manifest themselves similarly to elastic dipoles (interstitial atoms in a dumbbell configuration) in single-crystal copper.
Keywords:
Structural Defect, Radial Distribution, Function Polarizability Tensor, Shear Component, Embed Atom Method.
Citation:
R. A. Konchakov, N. P. Kobelev, V. A. Khonik, A. S. Makarov, “Elastic dipoles in the model of single-crystal and amorphous copper”, Fizika Tverdogo Tela, 58:2 (2016), 209–216; Phys. Solid State, 58:2 (2016), 215–222
\Bibitem{KonKobKho16}
\by R.~A.~Konchakov, N.~P.~Kobelev, V.~A.~Khonik, A.~S.~Makarov
\paper Elastic dipoles in the model of single-crystal and amorphous copper
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 2
\pages 209--216
\mathnet{http://mi.mathnet.ru/ftt10064}
\elib{https://elibrary.ru/item.asp?id=25668791}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 2
\pages 215--222
\crossref{https://doi.org/10.1134/S1063783416020141}
Linking options:
https://www.mathnet.ru/eng/ftt10064
https://www.mathnet.ru/eng/ftt/v58/i2/p209
This publication is cited in the following 10 articles:
R. A. Konchakov, A. S. Makarov, G. V. Afonin, M. A. Kretova, N. P. Kobelev, V. A. Khonik, “Relation between the shear and dilatational elastic energies of interstitial defects in metallic crystals”, JETP Letters, 109:7 (2019), 460–464
Vitaly Khonik, Nikolai Kobelev, “Metallic Glasses: A New Approach to the Understanding of the Defect Structure and Physical Properties”, Metals, 9:5 (2019), 605
Yu. P. Mitrofanov, N. P. Kobelev, V. A. Khonik, “On the relationship the properties of metallic glasses and their maternal crystals”, Phys. Solid State, 61:6 (2019), 962–968
Yu.P. Mitrofanov, N.P. Kobelev, V.A. Khonik, “Different metastable equilibrium states in metallic glasses occurring far below and near the glass transition”, Journal of Non-Crystalline Solids, 497 (2018), 48
E. V. Goncharova, A. S. Makarov, R. A. Konchakov, N. P. Kobelev, V. A. Khonik, “Premelting generation of interstitial defects in polycrystalline indium”, JETP Letters, 106:1 (2017), 35–39
E V Goncharova, R A Konchakov, A S Makarov, N P Kobelev, V A Khonik, “Identification of interstitial-like defects in a computer model of glassy aluminum”, J. Phys.: Condens. Matter, 29:30 (2017), 305701
G.V. Afonin, Yu.P. Mitrofanov, A.S. Makarov, N.P. Kobelev, V.A. Khonik, “On the origin of heat effects and shear modulus changes upon structural relaxation and crystallization of metallic glasses”, Journal of Non-Crystalline Solids, 475 (2017), 48
V A Khonik, “Amorphous physics and materials: Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials”, Chinese Phys. B, 26:1 (2017), 016401
A.S. Makarov, Yu.P. Mitrofanov, G.V. Afonin, N.P. Kobelev, V.A. Khonik, “Shear susceptibility – A universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and “defect” structure of metallic glasses”, Intermetallics, 87 (2017), 1
R. A. Konchakov, N. P. Kobelev, A. S. Makarov, Yu. P. Mitrofanov, V. A. Khonik, “Assessing the role of nonlinear elasticity in shaping the relaxation properties of noncrystalline metallic materials”, Bull. Russ. Acad. Sci. Phys., 80:11 (2016), 1411