Abstract:
An element a of a complex Banach algebra with unit 1I and with standard conditions on the norm (‖ab‖⩽‖a‖⋅‖b‖ and ‖1I‖=1) is said to be Hermitian if ‖eita‖=1 for any real number t. An element is said to be decomposable if it admits a representation of the form a+ib in which a and b are Hermitian. The decomposable elements form a Banach Lie algebra (with respect to the commutator). The Hermitian components are determined uniquely, and hence this Lie algebra has the natural involution a+ib=x→x∗=a−ib. One can readily see that ‖x∗‖⩽2‖x‖. Among other things, we prove that ‖x∗‖⩽γ‖x‖, where γ<2. In fact, the situation is treated in more detail: the original problem is included in a continuous family parametrized by the numerical radius of the element. Finding the exact value of the constant γ is reduced to a variational problem in the theory of entire functions of exponential type. Approximately, γ is equal to 1.92±0.04.
Citation:
E. A. Gorin, “Estimates for the Involution of Decomposable Elements of a Complex Banach Algebra”, Funktsional. Anal. i Prilozhen., 39:4 (2005), 14–31; Funct. Anal. Appl., 39:4 (2005), 256–270
\Bibitem{Gor05}
\by E.~A.~Gorin
\paper Estimates for the Involution of Decomposable Elements of a Complex Banach Algebra
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 4
\pages 14--31
\mathnet{http://mi.mathnet.ru/faa82}
\crossref{https://doi.org/10.4213/faa82}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2197511}
\zmath{https://zbmath.org/?q=an:1124.46032}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 4
\pages 256--270
\crossref{https://doi.org/10.1007/s10688-005-0047-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234168400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29144476428}
Linking options:
https://www.mathnet.ru/eng/faa82
https://doi.org/10.4213/faa82
https://www.mathnet.ru/eng/faa/v39/i4/p14
This publication is cited in the following 6 articles:
M. I. Karakhanyan, H. A. Kamalyan, “Some remarks on properties of elements from complex Banach algebras”, Uch. zapiski EGU, ser. Fizika i Matematika, 2013, no. 2, 15–21
E. A. Gorin, “Positive definite functions as an instrument of mathematical analysis”, J. Math. Sci., 197:4 (2014), 492–511
M. I. Karakhanyan, T. M. Khudoyan, “On symmetric subalgebras in Banach algebra”, Uch. zapiski EGU, ser. Fizika i Matematika, 2009, no. 3, 58–60
Norvidas, S, “On the norm and spectral radius of Hermitian elements”, Lithuanian Mathematical Journal, 48:1 (2008), 92
Martin I. Karakhanyan, “Some remarks on general commutators theorems”, J. Contemp. Mathemat. Anal., 42:3 (2007), 146
E. A. Gorin, “Some functional-difference equations solvable in finitary functions”, St. Petersburg Math. J., 18:5 (2007), 779–796