Abstract:
We introduce the notion of logarithmic index of a vector field on a hypersurface and prove that the homological index can be expressed via the logarithmic index. Then both invariants are described in terms of logarithmic differential forms for Saito free divisors, which are hypersurfaces with nonisolated singularities, and all contracting homology groups of the complex of regular holomorphic forms on such a hypersurface are computed. In conclusion, we consider the case of normal hypersurfaces, including the case of an isolated singularity, and describe the contracting homology of the complex of regular meromorphic forms with the help of the residue of logarithmic forms.
Citation:
A. G. Aleksandrov, “The Index of Vector Fields and Logarithmic Differential Forms”, Funktsional. Anal. i Prilozhen., 39:4 (2005), 1–13; Funct. Anal. Appl., 39:4 (2005), 245–255
\Bibitem{Ale05}
\by A.~G.~Aleksandrov
\paper The Index of Vector Fields and Logarithmic Differential Forms
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 4
\pages 1--13
\mathnet{http://mi.mathnet.ru/faa81}
\crossref{https://doi.org/10.4213/faa81}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2197510}
\zmath{https://zbmath.org/?q=an:1115.32016}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 4
\pages 245--255
\crossref{https://doi.org/10.1007/s10688-005-0046-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234168400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29244447106}
Linking options:
https://www.mathnet.ru/eng/faa81
https://doi.org/10.4213/faa81
https://www.mathnet.ru/eng/faa/v39/i4/p1
This publication is cited in the following 13 articles:
Diogo da Silva Machado, “Residue formula for logarithmic foliations along a divisor with isolated singularities and applications”, Trans. Amer. Math. Soc., 2025
Maurício Corrêa, Handbook of Geometry and Topology of Singularities VI: Foliations, 2024, 123
José Luis Cisneros-Molina, Agustín Romano-Velázquez, “Indices of vector fields for mixed functions”, Bol. Soc. Mat. Mex., 30:3 (2024)
Alexander G. Aleksandrov, “The Poincaré Index on Singular Varieties”, J, 5:3 (2022), 380
Alexander G. Aleksandrov, “The Poincaré Index and Its Applications”, Universe, 8:4 (2022), 223
Correa M., Machado Diogo da Silva, “Residue Formulas For Logarithmic Foliations and Applications”, Trans. Am. Math. Soc., 371:9 (2019), 6403–6420
Nabeshima K., Tajima Sh., “Computation Methods of Logarithmic Vector Fields Associated to Semi-Weighted Homogeneous Isolated Hypersurface Singularities”, Tsukuba J. Math., 42:2 (2018), 191–231
Aleksandrov A.G., “the Poincaré Index and the Chi(Y)-Characteristic of Hirzebruch”, Complex Var. Elliptic Equ., 61:2 (2016), 166–212
A. G. Aleksandrov, “The Index of Differential Forms on Complete Intersections”, Funct. Anal. Appl., 49:1 (2015), 1–14
Aleksandrov A.G., “The Topological Index of Vector Fields at Quasihomogeneous Complete Intersections”, C. R. Math., 350:19-20 (2012), 911–916
Brasselet J.-P., Seade J., Suwa T., Vector fields on singular varieties, Lecture Notes in Math., 1987, Springer-Verlag, Berlin, 2009, xx+225 pp.
A.G. Aleksandrov, A.A. Castro, V.A. Gruzman, “Control of evolutionary processes, topological index and deformation theory”, IFAC Proceedings Volumes, 41:2 (2008), 13293
Aleksandr G. Aleksandrov *, “Logarithmic differential forms, torsion differentials and residue”, Complex Variables, Theory and Application: An International Journal, 50:7-11 (2005), 777