Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 4, Pages 1–13
DOI: https://doi.org/10.4213/faa81
(Mi faa81)
 

This article is cited in 13 scientific papers (total in 13 papers)

The Index of Vector Fields and Logarithmic Differential Forms

A. G. Aleksandrov

Institute of Control Sciences, Russian Academy of Sciences
References:
Abstract: We introduce the notion of logarithmic index of a vector field on a hypersurface and prove that the homological index can be expressed via the logarithmic index. Then both invariants are described in terms of logarithmic differential forms for Saito free divisors, which are hypersurfaces with nonisolated singularities, and all contracting homology groups of the complex of regular holomorphic forms on such a hypersurface are computed. In conclusion, we consider the case of normal hypersurfaces, including the case of an isolated singularity, and describe the contracting homology of the complex of regular meromorphic forms with the help of the residue of logarithmic forms.
Keywords: singularity, vector field, logarithmic differential form, contracting homology, logarithmic index, Saito free divisor.
Received: 03.03.2004
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 4, Pages 245–255
DOI: https://doi.org/10.1007/s10688-005-0046-0
Bibliographic databases:
Document Type: Article
UDC: 515.16+512.7
Language: Russian
Citation: A. G. Aleksandrov, “The Index of Vector Fields and Logarithmic Differential Forms”, Funktsional. Anal. i Prilozhen., 39:4 (2005), 1–13; Funct. Anal. Appl., 39:4 (2005), 245–255
Citation in format AMSBIB
\Bibitem{Ale05}
\by A.~G.~Aleksandrov
\paper The Index of Vector Fields and Logarithmic Differential Forms
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 4
\pages 1--13
\mathnet{http://mi.mathnet.ru/faa81}
\crossref{https://doi.org/10.4213/faa81}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2197510}
\zmath{https://zbmath.org/?q=an:1115.32016}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 4
\pages 245--255
\crossref{https://doi.org/10.1007/s10688-005-0046-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234168400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29244447106}
Linking options:
  • https://www.mathnet.ru/eng/faa81
  • https://doi.org/10.4213/faa81
  • https://www.mathnet.ru/eng/faa/v39/i4/p1
  • This publication is cited in the following 13 articles:
    1. Diogo da Silva Machado, “Residue formula for logarithmic foliations along a divisor with isolated singularities and applications”, Trans. Amer. Math. Soc., 2025  crossref
    2. Maurício Corrêa, Handbook of Geometry and Topology of Singularities VI: Foliations, 2024, 123  crossref
    3. José Luis Cisneros-Molina, Agustín Romano-Velázquez, “Indices of vector fields for mixed functions”, Bol. Soc. Mat. Mex., 30:3 (2024)  crossref
    4. Alexander G. Aleksandrov, “The Poincaré Index on Singular Varieties”, J, 5:3 (2022), 380  crossref
    5. Alexander G. Aleksandrov, “The Poincaré Index and Its Applications”, Universe, 8:4 (2022), 223  crossref
    6. Correa M., Machado Diogo da Silva, “Residue Formulas For Logarithmic Foliations and Applications”, Trans. Am. Math. Soc., 371:9 (2019), 6403–6420  crossref  mathscinet  zmath  isi  scopus
    7. Nabeshima K., Tajima Sh., “Computation Methods of Logarithmic Vector Fields Associated to Semi-Weighted Homogeneous Isolated Hypersurface Singularities”, Tsukuba J. Math., 42:2 (2018), 191–231  crossref  mathscinet  zmath  isi
    8. Aleksandrov A.G., “the Poincaré Index and the Chi(Y)-Characteristic of Hirzebruch”, Complex Var. Elliptic Equ., 61:2 (2016), 166–212  crossref  mathscinet  zmath  isi  scopus
    9. A. G. Aleksandrov, “The Index of Differential Forms on Complete Intersections”, Funct. Anal. Appl., 49:1 (2015), 1–14  mathnet  crossref  crossref  zmath  isi  elib
    10. Aleksandrov A.G., “The Topological Index of Vector Fields at Quasihomogeneous Complete Intersections”, C. R. Math., 350:19-20 (2012), 911–916  crossref  mathscinet  zmath  isi  elib  scopus
    11. Brasselet J.-P., Seade J., Suwa T., Vector fields on singular varieties, Lecture Notes in Math., 1987, Springer-Verlag, Berlin, 2009, xx+225 pp.  crossref  mathscinet  zmath  isi
    12. A.G. Aleksandrov, A.A. Castro, V.A. Gruzman, “Control of evolutionary processes, topological index and deformation theory”, IFAC Proceedings Volumes, 41:2 (2008), 13293  crossref
    13. Aleksandr G. Aleksandrov *, “Logarithmic differential forms, torsion differentials and residue”, Complex Variables, Theory and Application: An International Journal, 50:7-11 (2005), 777  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:598
    Full-text PDF :255
    References:96
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025