Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 3, Pages 66–69
DOI: https://doi.org/10.4213/faa744
(Mi faa744)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

The Real Interpolation Method on Couples of Intersections

S. V. Astashkina, P. Sunehagb

a Samara State University
b Uppsala University
Full-text PDF (189 kB) Citations (1)
References:
Abstract: Suppose that $(X_0,X_1)$ is a Banach couple, $X_0\cap X_1$ is dense in $X_0$ and $X_1$, $(X_0,X_1)_{\theta,q}$ ($0<\theta<1$, $1\le q<\infty$) are the spaces of the real interpolation method, $\psi\in(X_0\cap X_1)^*$, $\psi\ne 0$, is a linear functional, $N=\operatorname{Ker}\psi$, and $N_i$ stands for $N$ with the norm inherited from $X_i$ ($i=0,1$). The following theorem is proved: the norms of the spaces $(N_0,N_1)_{\theta,q}$ and $(X_0,X_1)_{\theta,q}$ are equivalent on $N$ if and only if $\theta\in(0,\alpha)\cup(\beta_\infty,\alpha_0)\cup(\beta_0,\alpha_\infty)\cup(\beta,1)$, where $\alpha$, $\beta$, $\alpha_0$, $\beta_0$, $\alpha_\infty$, and $\beta_\infty$ are the dilation indices of the function $k(t)=\mathcal{K}(t,\psi;X_0^*,X_1^*)$.
Keywords: interpolation space, interpolation of subspaces, interpolation of intersections, real interpolation method, $\mathcal{K}$-functional, dilation index of a function, weighted $L_p$-space.
Received: 20.04.2005
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 3, Pages 218–221
DOI: https://doi.org/10.1007/s10688-006-0033-0
Bibliographic databases:
Document Type: Article
UDC: 517.982.27
Language: Russian
Citation: S. V. Astashkin, P. Sunehag, “The Real Interpolation Method on Couples of Intersections”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 66–69; Funct. Anal. Appl., 40:3 (2006), 218–221
Citation in format AMSBIB
\Bibitem{AstSun06}
\by S.~V.~Astashkin, P.~Sunehag
\paper The Real Interpolation Method on Couples of Intersections
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 66--69
\mathnet{http://mi.mathnet.ru/faa744}
\crossref{https://doi.org/10.4213/faa744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265686}
\zmath{https://zbmath.org/?q=an:1123.46017}
\elib{https://elibrary.ru/item.asp?id=9296644}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 218--221
\crossref{https://doi.org/10.1007/s10688-006-0033-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241583800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749524624}
Linking options:
  • https://www.mathnet.ru/eng/faa744
  • https://doi.org/10.4213/faa744
  • https://www.mathnet.ru/eng/faa/v40/i3/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :223
    References:81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024