|
This article is cited in 1 scientific paper (total in 1 paper)
Brief communications
The Real Interpolation Method on Couples of Intersections
S. V. Astashkina, P. Sunehagb a Samara State University
b Uppsala University
Abstract:
Suppose that $(X_0,X_1)$ is a Banach couple, $X_0\cap X_1$ is dense in $X_0$ and $X_1$, $(X_0,X_1)_{\theta,q}$ ($0<\theta<1$, $1\le q<\infty$) are the spaces of the real interpolation method, $\psi\in(X_0\cap X_1)^*$, $\psi\ne 0$, is a linear functional, $N=\operatorname{Ker}\psi$, and $N_i$ stands for $N$ with the norm inherited from $X_i$ ($i=0,1$). The following theorem is proved: the norms of the spaces $(N_0,N_1)_{\theta,q}$ and $(X_0,X_1)_{\theta,q}$ are equivalent on $N$ if and only if
$\theta\in(0,\alpha)\cup(\beta_\infty,\alpha_0)\cup(\beta_0,\alpha_\infty)\cup(\beta,1)$, where $\alpha$, $\beta$, $\alpha_0$, $\beta_0$, $\alpha_\infty$, and $\beta_\infty$ are the dilation indices of the function
$k(t)=\mathcal{K}(t,\psi;X_0^*,X_1^*)$.
Keywords:
interpolation space, interpolation of subspaces, interpolation of intersections, real interpolation method, $\mathcal{K}$-functional, dilation index of a function, weighted $L_p$-space.
Received: 20.04.2005
Citation:
S. V. Astashkin, P. Sunehag, “The Real Interpolation Method on Couples of Intersections”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 66–69; Funct. Anal. Appl., 40:3 (2006), 218–221
Linking options:
https://www.mathnet.ru/eng/faa744https://doi.org/10.4213/faa744 https://www.mathnet.ru/eng/faa/v40/i3/p66
|
Statistics & downloads: |
Abstract page: | 553 | Full-text PDF : | 223 | References: | 81 | First page: | 1 |
|