Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2006, Volume 40, Issue 3, Pages 53–65
DOI: https://doi.org/10.4213/faa743
(Mi faa743)
 

This article is cited in 67 scientific papers (total in 67 papers)

Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions

N. V. Tsilevich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: The purpose of this paper is to show that the quantum inverse scattering method for the so-called $q$-boson model has a nice interpretation in terms of the algebra of symmetric functions. In particular, in the case of the phase model (corresponding to $q=0$) the creation operator coincides (modulo a scalar factor) with the operator of multiplication by the generating function of complete homogeneous symmetric functions, and the wave functions are expressed via the Schur functions $s_\lambda(x)$. The general case of the $q$-boson model is related in a similar way to the Hall–Littlewood symmetric functions $P_\lambda(x;q^2)$.
Keywords: $q$-boson model, phase model, quantum inverse scattering method, symmetric functions, Hall–Littlewood functions, Schur functions.
Received: 10.08.2005
English version:
Functional Analysis and Its Applications, 2006, Volume 40, Issue 3, Pages 207–217
DOI: https://doi.org/10.1007/s10688-006-0032-1
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: N. V. Tsilevich, “Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 53–65; Funct. Anal. Appl., 40:3 (2006), 207–217
Citation in format AMSBIB
\Bibitem{Tsi06}
\by N.~V.~Tsilevich
\paper Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 53--65
\mathnet{http://mi.mathnet.ru/faa743}
\crossref{https://doi.org/10.4213/faa743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265685}
\zmath{https://zbmath.org/?q=an:1118.81041}
\elib{https://elibrary.ru/item.asp?id=9296643}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 207--217
\crossref{https://doi.org/10.1007/s10688-006-0032-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241583800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749537065}
Linking options:
  • https://www.mathnet.ru/eng/faa743
  • https://doi.org/10.4213/faa743
  • https://www.mathnet.ru/eng/faa/v40/i3/p53
  • This publication is cited in the following 67 articles:
    1. Paul Zinn-Justin, Encyclopedia of Mathematical Physics, 2025, 127  crossref
    2. Jiaxing Wang, Denghui Li, Shengyu Zhang, Zhaowen Yan, “(2,1)-type and (3)-type universal character hierarchies and the τ functions”, Mod. Phys. Lett. A, 40:11n12 (2025)  crossref
    3. Xin Zhang, Zhaowen Yan, “The fermion representation of the generalized phase model”, Nuclear Physics B, 1002 (2024), 116532  crossref
    4. Sergei Korotkikh, “Representation theoretic interpretation and interpolation properties of inhomogeneous spin q-Whittaker polynomials”, Sel. Math. New Ser., 30:3 (2024)  crossref
    5. Rui An, Zhaowen Yan, “The generalization of strong anisotropic XXZ model and UC hierarchy”, Anal.Math.Phys., 14:2 (2024)  crossref
    6. Alexei Borodin, Sergei Korotkikh, “Inhomogeneous spin q-Whittaker polynomials”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 33:1 (2024), 1  crossref
    7. Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson, “Colored vertex models and Iwahori Whittaker functions”, Sel. Math. New Ser., 30:4 (2024)  crossref
    8. Thiago Araujo, “Q-boson model and relations with integrable hierarchies”, Nuclear Physics B, 1006 (2024), 116640  crossref
    9. Ben Brubaker, Will Grodzicki, Andrew Schultz, “Special Functions for Hyperoctahedral Groups Using Bosonic Lattice Models”, Ann. Comb., 2024  crossref
    10. Na Wang, “3-JACK POLYNOMIALS AND YANG–BAXTER EQUATION”, Reports on Mathematical Physics, 91:1 (2023), 79  crossref
    11. Amol Aggarwal, Alexei Borodin, Leonid Petrov, Michael Wheeler, “Free fermion six vertex model: symmetric functions and random domino tilings”, Sel. Math. New Ser., 29:3 (2023)  crossref
    12. Na Wang, Can Zhang, Ke Wu, “3D boson representation of affine Yangian of gl(1) and 3D cut-and-join operators”, Journal of Mathematical Physics, 64:11 (2023)  crossref
    13. Na Wang, Ke Wu, “3D bosons, 3-Jack polynomials and affine Yangian of $ \mathfrak{gl}(1) $”, J. High Energ. Phys., 2023:3 (2023)  crossref
    14. Jan Felipe van Diejen, “Spectrum and Orthogonality of the Bethe Ansatz for the Periodic q-Difference Toda Chain on ${\mathbb {Z}}_{m+1}$”, Ann. Henri Poincaré, 24:6 (2023), 1877  crossref
    15. van Diejen J.F., “Harmonic Analysis of Boxed Hyperoctahedral Hall-Littlewood Polynomials”, J. Funct. Anal., 282:1 (2022), 109256  crossref  mathscinet  isi
    16. Alexei Borodin, Michael Wheeler, “Nonsymmetric Macdonald polynomials via integrable vertex models”, Trans. Amer. Math. Soc., 375:12 (2022), 8353  crossref
    17. Borodin A., Wheeler M., “Spin Q-Whittaker Polynomials”, Adv. Math., 376 (2021), 107449  crossref  mathscinet  zmath  isi
    18. Pozsgay B., Gombor T., Hutsalyuk A., Jiang Yu., Pristyak L., Vernier E., “Integrable Spin Chain With Hilbert Space Fragmentation and Solvable Real-Time Dynamics”, Phys. Rev. E, 104:4 (2021), 044106  crossref  mathscinet  isi
    19. Corteel S., Gitlin A., Keating D., Meza J., “A Vertex Model For Llt Polynomials”, Int. Math. Res. Notices, 2021  crossref  mathscinet  isi
    20. Wang N., Shi L., “Affine Yangian and Schur Functions on Plane Partitions of 4”, J. Math. Phys., 62:6 (2021), 061701  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:649
    Full-text PDF :262
    References:76
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025