Abstract:
The purpose of this paper is to show that the quantum inverse scattering method for the so-called $q$-boson model has a nice interpretation in terms of the algebra of symmetric functions. In particular, in the case of the
phase model (corresponding to $q=0$) the creation operator coincides (modulo a scalar factor) with the operator of
multiplication by the generating function of complete homogeneous symmetric functions, and the wave functions are expressed via the Schur functions $s_\lambda(x)$. The general case of the $q$-boson model is related in a similar way to the Hall–Littlewood symmetric functions $P_\lambda(x;q^2)$.
Citation:
N. V. Tsilevich, “Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions”, Funktsional. Anal. i Prilozhen., 40:3 (2006), 53–65; Funct. Anal. Appl., 40:3 (2006), 207–217
\Bibitem{Tsi06}
\by N.~V.~Tsilevich
\paper Quantum Inverse Scattering Method for the $q$-Boson Model and Symmetric Functions
\jour Funktsional. Anal. i Prilozhen.
\yr 2006
\vol 40
\issue 3
\pages 53--65
\mathnet{http://mi.mathnet.ru/faa743}
\crossref{https://doi.org/10.4213/faa743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265685}
\zmath{https://zbmath.org/?q=an:1118.81041}
\elib{https://elibrary.ru/item.asp?id=9296643}
\transl
\jour Funct. Anal. Appl.
\yr 2006
\vol 40
\issue 3
\pages 207--217
\crossref{https://doi.org/10.1007/s10688-006-0032-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241583800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749537065}
Linking options:
https://www.mathnet.ru/eng/faa743
https://doi.org/10.4213/faa743
https://www.mathnet.ru/eng/faa/v40/i3/p53
This publication is cited in the following 67 articles:
Paul Zinn-Justin, Encyclopedia of Mathematical Physics, 2025, 127
Jiaxing Wang, Denghui Li, Shengyu Zhang, Zhaowen Yan, “(2,1)-type and (3)-type universal character hierarchies and the τ functions”, Mod. Phys. Lett. A, 40:11n12 (2025)
Xin Zhang, Zhaowen Yan, “The fermion representation of the generalized phase model”, Nuclear Physics B, 1002 (2024), 116532
Sergei Korotkikh, “Representation theoretic interpretation and interpolation properties of inhomogeneous spin q-Whittaker polynomials”, Sel. Math. New Ser., 30:3 (2024)
Rui An, Zhaowen Yan, “The generalization of strong anisotropic XXZ model and UC hierarchy”, Anal.Math.Phys., 14:2 (2024)
Alexei Borodin, Sergei Korotkikh, “Inhomogeneous spin q-Whittaker polynomials”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 33:1 (2024), 1
Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson, “Colored vertex models and Iwahori Whittaker functions”, Sel. Math. New Ser., 30:4 (2024)
Thiago Araujo, “Q-boson model and relations with integrable hierarchies”, Nuclear Physics B, 1006 (2024), 116640
Ben Brubaker, Will Grodzicki, Andrew Schultz, “Special Functions for Hyperoctahedral Groups Using Bosonic Lattice Models”, Ann. Comb., 2024
Na Wang, “3-JACK POLYNOMIALS AND YANG–BAXTER EQUATION”, Reports on Mathematical Physics, 91:1 (2023), 79
Amol Aggarwal, Alexei Borodin, Leonid Petrov, Michael Wheeler, “Free fermion six vertex model: symmetric functions and random domino tilings”, Sel. Math. New Ser., 29:3 (2023)
Na Wang, Can Zhang, Ke Wu, “3D boson representation of affine Yangian of gl(1) and 3D cut-and-join operators”, Journal of Mathematical Physics, 64:11 (2023)
Na Wang, Ke Wu, “3D bosons, 3-Jack polynomials and affine Yangian of $ \mathfrak{gl}(1) $”, J. High Energ. Phys., 2023:3 (2023)
Jan Felipe van Diejen, “Spectrum and Orthogonality of the Bethe Ansatz for the Periodic q-Difference Toda Chain on ${\mathbb {Z}}_{m+1}$”, Ann. Henri Poincaré, 24:6 (2023), 1877
van Diejen J.F., “Harmonic Analysis of Boxed Hyperoctahedral Hall-Littlewood Polynomials”, J. Funct. Anal., 282:1 (2022), 109256
Alexei Borodin, Michael Wheeler, “Nonsymmetric Macdonald polynomials via integrable vertex models”, Trans. Amer. Math. Soc., 375:12 (2022), 8353
Borodin A., Wheeler M., “Spin Q-Whittaker Polynomials”, Adv. Math., 376 (2021), 107449
Pozsgay B., Gombor T., Hutsalyuk A., Jiang Yu., Pristyak L., Vernier E., “Integrable Spin Chain With Hilbert Space Fragmentation and Solvable Real-Time Dynamics”, Phys. Rev. E, 104:4 (2021), 044106
Corteel S., Gitlin A., Keating D., Meza J., “A Vertex Model For Llt Polynomials”, Int. Math. Res. Notices, 2021
Wang N., Shi L., “Affine Yangian and Schur Functions on Plane Partitions of 4”, J. Math. Phys., 62:6 (2021), 061701