Abstract:
We define a generalized Euler gamma function Γβ(z)Γβ(z), where the product is taken over powers of integers rather than integers themselves. Studying the associated spectral functions and in particular the zeta function, we obtain the main properties of Γβ(z)Γβ(z) and its asymptotic expansion for large values of the argument.
\Bibitem{Spr05}
\by M.~Spreafico
\paper A Generalization of the Euler Gamma Function
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 87--91
\mathnet{http://mi.mathnet.ru/faa46}
\crossref{https://doi.org/10.4213/faa46}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161522}
\zmath{https://zbmath.org/?q=an:1115.33002}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 156--159
\crossref{https://doi.org/10.1007/s10688-005-0031-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231004800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744475415}
Linking options:
https://www.mathnet.ru/eng/faa46
https://doi.org/10.4213/faa46
https://www.mathnet.ru/eng/faa/v39/i2/p87
This publication is cited in the following 6 articles:
Albeverio S., Cacciapuoti C., Spreafico M., “Relative Partition Function of Coulomb Plus Delta Interaction”, Functional Analysis and Operator Theory For Quantum Physics: the Pavel Exner Anniversary Volume, EMS Ser. Congr. Rep., eds. Dittrich J., Kovarik H., Laptev A., Eur. Math. Soc., 2017, 1–29
Spreafico M., “Zeta Determinant for Double Sequences of Spectral Type”, Proc. Amer. Math. Soc., 140:6 (2012), 1881–1896
Spreafico M., “Zeta Determinant and Operator Determinants”, Osaka J Math, 48:1 (2011), 41–50
Spreafico M., “On the Barnes double zeta and Gamma functions”, J. Number Theory, 129:9 (2009), 2035–2063
Spreafico M., Zerbini S., “Spectral analysis and zeta determinant on the deformed spheres”, Comm. Math. Phys., 273:3 (2007), 677–704
Spreafico M., “Zeta invariants for sequences of spectral type, special functions and the Lerch formula”, Proc. Roy. Soc. Edinburgh Sect. A, 136:4 (2006), 863–887