Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 2, Pages 82–86
DOI: https://doi.org/10.4213/faa45
(Mi faa45)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

The Number of Steps in the Robinson–Schensted Algorithm

D. Romik

Weizmann Institute of Science
Full-text PDF (168 kB) Citations (3)
References:
Abstract: Suppose that a permutation $\sigma\in \mathcal{S}_n$ is chosen at random ($n$ is large) and the Robinson–Schensted algorithm is applied to compute the associated Young diagram. Then for almost all permutations the number of bumping operations performed by the algorithm is about $(128/27\pi^2)n^{3/2}$, and the number of comparison operations is about $(64/27\pi^2) n^{3/2}\log_2 n$.
Keywords: Robinson–Schensted algorithm, analysis of algorithms, Young tableaux, Plancherel measure.
Received: 04.07.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 2, Pages 152–155
DOI: https://doi.org/10.1007/s10688-005-0030-8
Bibliographic databases:
Document Type: Article
UDC: 519.2+519.116
Language: Russian
Citation: D. Romik, “The Number of Steps in the Robinson–Schensted Algorithm”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 82–86; Funct. Anal. Appl., 39:2 (2005), 152–155
Citation in format AMSBIB
\Bibitem{Rom05}
\by D.~Romik
\paper The Number of Steps in the Robinson--Schensted Algorithm
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 82--86
\mathnet{http://mi.mathnet.ru/faa45}
\crossref{https://doi.org/10.4213/faa45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161521}
\zmath{https://zbmath.org/?q=an:1117.05006}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 152--155
\crossref{https://doi.org/10.1007/s10688-005-0030-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231004800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744446738}
Linking options:
  • https://www.mathnet.ru/eng/faa45
  • https://doi.org/10.4213/faa45
  • https://www.mathnet.ru/eng/faa/v39/i2/p82
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :227
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024