Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue Suppl. 1, paper published in the English version journal
DOI: https://doi.org/10.1134/S0016266323050027
(Mi faa4101)
 

Papers published in the English version of the journal

Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range

Kamel Mahfoudhi

Computer Science Department, Higher Institute of Applied Sciences and Technology, University of Sousse, Sousse, Tunisia
Abstract: The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the $S$-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.
Keywords: quaternions, quaternionic Hilbert space, quaternionic Krein spaces, numerical range, quaternionic Krein space numerical range.
Received: 27.02.2023
Revised: 04.11.2023
Accepted: 14.11.2023
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue S1, Pages S17–S25
DOI: https://doi.org/10.1134/S0016266323050027
Language: English
Citation: Kamel Mahfoudhi, “Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range”, Funct. Anal. Appl., 57:S1 (2023), S17–S25
Citation in format AMSBIB
\Bibitem{Mah23}
\by Kamel Mahfoudhi
\paper Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue S1
\pages S17--S25
\mathnet{http://mi.mathnet.ru/faa4101}
\crossref{https://doi.org/10.1134/S0016266323050027}
Linking options:
  • https://www.mathnet.ru/eng/faa4101
  • https://doi.org/10.1134/S0016266323050027
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:28
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024