Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue Suppl. 1, paper published in the English version journal
DOI: https://doi.org/10.1134/S0016266323050039
(Mi faa4074)
 

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

A Convex-Block Approach to Numerical Radius Inequalities

Mohammad Sababheha , Cristian Condebc, Hamid Reza Moradid

a Vice president, Princess Sumaya University for Technology, Amman, Jordan
b Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina
c Consejo Nacional de Investigaciones Cientíificas y Tecnicas, Argentina
d Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Citations (1)
Abstract: A simple convex approach and block techniques are used to obtain new sharpened versions of numerical radius inequalities for Hilbert space operators. These include comparisons of norms of operators, their Cartesian parts, their numerical radii, and the numerical radius of the product of two operators.
Keywords: numerical radius, norm inequality, Cartesian decomposition, triangle inequality.
Received: 29.11.2022
Revised: 22.05.2023
Accepted: 24.05.2023
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue S1, Pages S26–S30
DOI: https://doi.org/10.1134/S0016266323050039
Document Type: Article
MSC: Primary 47A12, 47A30; Secondary 15A60, 47B15
Language: English
Citation: Mohammad Sababheh, Cristian Conde, Hamid Reza Moradi, “A Convex-Block Approach to Numerical Radius Inequalities”, Funct. Anal. Appl., 57:S1 (2023), S26–S30
Citation in format AMSBIB
\Bibitem{SabConMor23}
\by Mohammad Sababheh, Cristian Conde, Hamid Reza Moradi
\paper A Convex-Block Approach to Numerical Radius Inequalities
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue S1
\pages S26--S30
\mathnet{http://mi.mathnet.ru/faa4074}
\crossref{https://doi.org/10.1134/S0016266323050039}
Linking options:
  • https://www.mathnet.ru/eng/faa4074
  • https://doi.org/10.1134/S0016266323050039
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:18
    References:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024