|
This article is cited in 5 scientific papers (total in 5 papers)
Brief communications
Homogenization of the Schrödinger-type equations: operator estimates with correctors
T. A. Suslina Saint Petersburg State University
Abstract:
In $L_2(\mathbb R^d;\mathbb C^n)$ we consider a self-adjoint elliptic second-order
differential operator $A_\varepsilon$. It is assumed that the coefficients of $A_\varepsilon$
are periodic and depend on $\mathbf x/\varepsilon$, where $\varepsilon>0$ is a small parameter.
We study the behavior of the operator exponential $e^{-iA_\varepsilon\tau}$ for small $\varepsilon$
and $\tau\in\mathbb R$. The results are applied to study the behavior of the solution of the Cauchy problem
for the Schrödinger-type equation $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau)
= - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ with initial data in
a special class. For fixed $\tau$ and $\varepsilon\to 0$, the solution
${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ converges in $L_2(\mathbb R^d;\mathbb C^n)$
to the solution of the homogenized problem; the error is of order $O(\varepsilon)$.
We obtain approximations for the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$
in $L_2(\mathbb R^d;\mathbb C^n)$ with error
$O(\varepsilon^2)$ and in $H^1(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon)$.
These approximations involve appropriate correctors.
The dependence of errors on $\tau$ is traced.
Keywords:
periodic differential operators, homogenization, operator error estimates, Schrödinger-type equations.
Received: 06.06.2022 Revised: 06.06.2022 Accepted: 10.06.2022
Citation:
T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funktsional. Anal. i Prilozhen., 56:3 (2022), 93–99; Funct. Anal. Appl., 56:3 (2022), 229–234
Linking options:
https://www.mathnet.ru/eng/faa4019https://doi.org/10.4213/faa4019 https://www.mathnet.ru/eng/faa/v56/i3/p93
|
Statistics & downloads: |
Abstract page: | 238 | Full-text PDF : | 22 | References: | 64 | First page: | 18 |
|