Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 3, Pages 93–99
DOI: https://doi.org/10.4213/faa4019
(Mi faa4019)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Homogenization of the Schrödinger-type equations: operator estimates with correctors

T. A. Suslina

Saint Petersburg State University
Full-text PDF (539 kB) Citations (5)
References:
Abstract: In L2(Rd;Cn) we consider a self-adjoint elliptic second-order differential operator Aε. It is assumed that the coefficients of Aε are periodic and depend on x/ε, where ε>0 is a small parameter. We study the behavior of the operator exponential eiAετ for small ε and τR. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation iτuε(x,τ)=(Aεuε)(x,τ) with initial data in a special class. For fixed τ and ε0, the solution uε(,τ) converges in L2(Rd;Cn) to the solution of the homogenized problem; the error is of order O(ε). We obtain approximations for the solution uε(,τ) in L2(Rd;Cn) with error O(ε2) and in H1(Rd;Cn) with error O(ε). These approximations involve appropriate correctors. The dependence of errors on τ is traced.
Keywords: periodic differential operators, homogenization, operator error estimates, Schrödinger-type equations.
Funding agency Grant number
Russian Science Foundation 22-11-00092
This work was supported by the Russian Science Foundation (project no. 22-11-00092).
Received: 06.06.2022
Revised: 06.06.2022
Accepted: 10.06.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 3, Pages 229–234
DOI: https://doi.org/10.1134/S0016266322030078
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funktsional. Anal. i Prilozhen., 56:3 (2022), 93–99; Funct. Anal. Appl., 56:3 (2022), 229–234
Citation in format AMSBIB
\Bibitem{Sus22}
\by T.~A.~Suslina
\paper Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 3
\pages 93--99
\mathnet{http://mi.mathnet.ru/faa4019}
\crossref{https://doi.org/10.4213/faa4019}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 3
\pages 229--234
\crossref{https://doi.org/10.1134/S0016266322030078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85146865713}
Linking options:
  • https://www.mathnet.ru/eng/faa4019
  • https://doi.org/10.4213/faa4019
  • https://www.mathnet.ru/eng/faa/v56/i3/p93
  • This publication is cited in the following 5 articles:
    1. M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1  crossref
    2. T. Suslina, T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 2024  crossref
    3. M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370  mathnet  crossref  crossref
    4. M. Dorodnyi, “High-energy homogenization of a multidimensional nonstationary Schrödinger equation”, Russ. J. Math. Phys., 30:4 (2023), 480  crossref  mathscinet
    5. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :38
    References:88
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025