Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 3, Pages 93–99
DOI: https://doi.org/10.4213/faa4019
(Mi faa4019)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Homogenization of the Schrödinger-type equations: operator estimates with correctors

T. A. Suslina

Saint Petersburg State University
Full-text PDF (539 kB) Citations (5)
References:
Abstract: In $L_2(\mathbb R^d;\mathbb C^n)$ we consider a self-adjoint elliptic second-order differential operator $A_\varepsilon$. It is assumed that the coefficients of $A_\varepsilon$ are periodic and depend on $\mathbf x/\varepsilon$, where $\varepsilon>0$ is a small parameter. We study the behavior of the operator exponential $e^{-iA_\varepsilon\tau}$ for small $\varepsilon$ and $\tau\in\mathbb R$. The results are applied to study the behavior of the solution of the Cauchy problem for the Schrödinger-type equation $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau) = - (A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ with initial data in a special class. For fixed $\tau$ and $\varepsilon\to 0$, the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ converges in $L_2(\mathbb R^d;\mathbb C^n)$ to the solution of the homogenized problem; the error is of order $O(\varepsilon)$. We obtain approximations for the solution ${\mathbf u}_\varepsilon(\,\boldsymbol\cdot\,,\tau)$ in $L_2(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon^2)$ and in $H^1(\mathbb R^d;\mathbb C^n)$ with error $O(\varepsilon)$. These approximations involve appropriate correctors. The dependence of errors on $\tau$ is traced.
Keywords: periodic differential operators, homogenization, operator error estimates, Schrödinger-type equations.
Funding agency Grant number
Russian Science Foundation 22-11-00092
This work was supported by the Russian Science Foundation (project no. 22-11-00092).
Received: 06.06.2022
Revised: 06.06.2022
Accepted: 10.06.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 3, Pages 229–234
DOI: https://doi.org/10.1134/S0016266322030078
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funktsional. Anal. i Prilozhen., 56:3 (2022), 93–99; Funct. Anal. Appl., 56:3 (2022), 229–234
Citation in format AMSBIB
\Bibitem{Sus22}
\by T.~A.~Suslina
\paper Homogenization of the Schr\"odinger-type equations: operator estimates with correctors
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 3
\pages 93--99
\mathnet{http://mi.mathnet.ru/faa4019}
\crossref{https://doi.org/10.4213/faa4019}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 3
\pages 229--234
\crossref{https://doi.org/10.1134/S0016266322030078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85146865713}
Linking options:
  • https://www.mathnet.ru/eng/faa4019
  • https://doi.org/10.4213/faa4019
  • https://www.mathnet.ru/eng/faa/v56/i3/p93
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :22
    References:64
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024