Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 3, Pages 100–103
DOI: https://doi.org/10.4213/faa3975
(Mi faa3975)
 

Brief communications

On Poisson semigroup hypercontractivity for higher-dimensional spheres

Yi C. Huang

School of Mathematical Sciences, Nanjing Normal University
References:
Abstract: In this note we consider a variant of a question of Mueller and Weissler raised in 1982, thereby complementing a classical result of Beckner on Stein's conjecture and a recent result of Frank and Ivanisvili. More precisely, we show that, for $1<p\leq q<\infty$ and $n\geq1$, the Poisson semigroup $e^{-t\sqrt{-\Delta-(n-1)\mathbb{P}}}$ on the $n$-sphere is hypercontractive from $L^p$ to $L^q$ if and only if $e^{-t}\leq\sqrt{(p-1)/(q-1)}$; here $\Delta$ is the Laplace–Beltrami operator on the $n$-sphere and $\mathbb{P}$ is the projection operator onto spherical harmonics of degree $\geq1$.
Keywords: hypercontractivity, Poisson semigroup, higher-dimensional sphere.
Funding agency Grant number
National Natural Science Foundation of China 11801274
This research was partially supported by the NSF of China (grant no. 11801274).
Received: 26.12.2021
Revised: 26.12.2021
Accepted: 16.02.2022
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 3, Pages 235–238
DOI: https://doi.org/10.1134/S001626632203008X
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Yi C. Huang, “On Poisson semigroup hypercontractivity for higher-dimensional spheres”, Funktsional. Anal. i Prilozhen., 56:3 (2022), 100–103; Funct. Anal. Appl., 56:3 (2022), 235–238
Citation in format AMSBIB
\Bibitem{Hua22}
\by Yi~C.~Huang
\paper On Poisson semigroup hypercontractivity for higher-dimensional spheres
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 3
\pages 100--103
\mathnet{http://mi.mathnet.ru/faa3975}
\crossref{https://doi.org/10.4213/faa3975}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 3
\pages 235--238
\crossref{https://doi.org/10.1134/S001626632203008X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85147168287}
Linking options:
  • https://www.mathnet.ru/eng/faa3975
  • https://doi.org/10.4213/faa3975
  • https://www.mathnet.ru/eng/faa/v56/i3/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024