Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 1, Pages 66–80
DOI: https://doi.org/10.4213/faa3894
(Mi faa3894)
 

This article is cited in 4 scientific papers (total in 4 papers)

Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension

I. D. Kan

Moscow Aviation institute (National researching University), Moscow, Russia
Full-text PDF (754 kB) Citations (4)
References:
Abstract: Let DA(N) be the set of all integers not exceeding N and equal to irreducible denominators of positive rational numbers with finite continued fraction expansions in which all partial quotients belong to a finite number alphabet A. A new lower bound for the cardinality |DA(N)| is obtained, whose nontrivial part improves that known previously by up to 28%.
Thus, for A={1,2}, a formula derived in the paper implies the inequality |D{1,2}(N)|N0.531+0.024 with nontrivial part 0.024. The preceding result of the author was |D{1,2}(N)|N0.531+0.019, and a calculation by the original 2011 theorem of Bourgain and Kontorovich gave |D{1,2}(N)| N0.531+0.006.
Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, Hausdorff dimension.
Received: 15.03.2021
Revised: 01.06.2021
Accepted: 05.06.2021
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 1, Pages 48–60
DOI: https://doi.org/10.1134/S0016266322010051
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.336
PACS: 511.36 + 511.336
MSC: 511.36 + 511.336
Language: Russian
Citation: I. D. Kan, “Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension”, Funktsional. Anal. i Prilozhen., 56:1 (2022), 66–80; Funct. Anal. Appl., 56:1 (2022), 48–60
Citation in format AMSBIB
\Bibitem{Kan22}
\by I.~D.~Kan
\paper Strengthening of the Burgein--Kontorovich theorem on small values of Hausdorff dimension
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 1
\pages 66--80
\mathnet{http://mi.mathnet.ru/faa3894}
\crossref{https://doi.org/10.4213/faa3894}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 1
\pages 48--60
\crossref{https://doi.org/10.1134/S0016266322010051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135200615}
Linking options:
  • https://www.mathnet.ru/eng/faa3894
  • https://doi.org/10.4213/faa3894
  • https://www.mathnet.ru/eng/faa/v56/i1/p66
  • This publication is cited in the following 4 articles:
    1. Nikita Shulga, “Radical bound for Zaremba's conjecture”, Bulletin of London Math Soc, 2024  crossref
    2. I. D. Kan, G. Kh. Solov'ev, “System of Inequalities in Continued Fractions from Finite Alphabets”, Math. Notes, 113:2 (2023), 212–219  mathnet  crossref  crossref
    3. I. D. Kan, “Modular Generalization of the Bourgain–Kontorovich Theorem”, Math. Notes, 114:5 (2023), 785–796  mathnet  crossref  crossref  mathscinet
    4. I. D. Kan, V. A. Odnorob, “Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets”, Math. Notes, 112:3 (2022), 424–435  mathnet  crossref  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :123
    References:54
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025