Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 1, Pages 66–80
DOI: https://doi.org/10.4213/faa3894
(Mi faa3894)
 

This article is cited in 4 scientific papers (total in 4 papers)

Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension

I. D. Kan

Moscow Aviation institute (National researching University), Moscow, Russia
Full-text PDF (754 kB) Citations (4)
References:
Abstract: Let $\mathfrak{D}_\mathbf{A}(N)$ be the set of all integers not exceeding $N$ and equal to irreducible denominators of positive rational numbers with finite continued fraction expansions in which all partial quotients belong to a finite number alphabet $\mathbf{A}$. A new lower bound for the cardinality $|\mathfrak{D}_\mathbf{A}(N)|$ is obtained, whose nontrivial part improves that known previously by up to $28\%$.
Thus, for $\mathbf{A}=\{1,2\}$, a formula derived in the paper implies the inequality $|\mathfrak{D}_{\{1,2 \}}(N)|\gg N^{0.531+0.024}$ with nontrivial part $0.024$. The preceding result of the author was $|\mathfrak{D}_{\{1,2 \}} (N)|\gg N^{0.531+0.019}$, and a calculation by the original 2011 theorem of Bourgain and Kontorovich gave $|\mathfrak{D}_{\{1,2 \}}(N)|$ $\gg N^{0.531+0.006}$.
Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, Hausdorff dimension.
Received: 15.03.2021
Revised: 01.06.2021
Accepted: 05.06.2021
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 1, Pages 48–60
DOI: https://doi.org/10.1134/S0016266322010051
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.336
PACS: 511.36 + 511.336
MSC: 511.36 + 511.336
Language: Russian
Citation: I. D. Kan, “Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension”, Funktsional. Anal. i Prilozhen., 56:1 (2022), 66–80; Funct. Anal. Appl., 56:1 (2022), 48–60
Citation in format AMSBIB
\Bibitem{Kan22}
\by I.~D.~Kan
\paper Strengthening of the Burgein--Kontorovich theorem on small values of Hausdorff dimension
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 1
\pages 66--80
\mathnet{http://mi.mathnet.ru/faa3894}
\crossref{https://doi.org/10.4213/faa3894}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 1
\pages 48--60
\crossref{https://doi.org/10.1134/S0016266322010051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135200615}
Linking options:
  • https://www.mathnet.ru/eng/faa3894
  • https://doi.org/10.4213/faa3894
  • https://www.mathnet.ru/eng/faa/v56/i1/p66
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :82
    References:38
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024