Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2022, Volume 56, Issue 1, Pages 81–93
DOI: https://doi.org/10.4213/faa3922
(Mi faa3922)
 

This article is cited in 1 scientific paper (total in 1 paper)

Polynomials in the differentiation operator and formulas for the sums of some converging series

K. A. Mirzoevab, T. A. Safonovacb

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
c Northern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk, Russia
Full-text PDF (583 kB) Citations (1)
References:
Abstract: Let $P_n(x)$ be any polynomial of degree $n\geq 2$ with real coefficients such that $P_n(k)\ne 0$ for $k\in\mathbb{Z}$. In the paper, in particular, the sum of a series of the form $\sum_{k=-\infty}^{+\infty}1/P_n(k)$ is expressed as the value at $(0,0)$ of the Green function of the self-adjoint problem generated by the differential expression $l_n[y]=P_n(i\,d/dx) y$ and the boundary conditions $y^{(j)}(0)=y^{(j)}(2\pi)$ ($j=0,1,\dots,n-1$). Thus, such a sum is explicitly expressed in terms of the value of an easy-to-construct elementary function. These formulas, obviously, also apply to sums of the form $\sum_{k=0}^{+\infty}1/P_n(k^2)$, while it is well known that similar general formulas for the sum $\sum_{k=0}^{+\infty}1/P_n(k)$ do not exist.
Keywords: Green function, sum of series, values of the Riemann zeta function at even points, values of the Dirichlet beta function at odd points.
Funding agency Grant number
Russian Science Foundation 20-11-20261
This work was supported by the Russian Science Foundation (project no. 20-11-20261).
Received: 17.06.2021
Revised: 22.11.2021
Accepted: 29.11.2021
English version:
Functional Analysis and Its Applications, 2022, Volume 56, Issue 1, Pages 61–71
DOI: https://doi.org/10.1134/S0016266322010063
Bibliographic databases:
Document Type: Article
UDC: 517.927.25+517.521.15
Language: Russian
Citation: K. A. Mirzoev, T. A. Safonova, “Polynomials in the differentiation operator and formulas for the sums of some converging series”, Funktsional. Anal. i Prilozhen., 56:1 (2022), 81–93; Funct. Anal. Appl., 56:1 (2022), 61–71
Citation in format AMSBIB
\Bibitem{MirSaf22}
\by K.~A.~Mirzoev, T.~A.~Safonova
\paper Polynomials in the differentiation operator and formulas for the sums of some converging series
\jour Funktsional. Anal. i Prilozhen.
\yr 2022
\vol 56
\issue 1
\pages 81--93
\mathnet{http://mi.mathnet.ru/faa3922}
\crossref{https://doi.org/10.4213/faa3922}
\transl
\jour Funct. Anal. Appl.
\yr 2022
\vol 56
\issue 1
\pages 61--71
\crossref{https://doi.org/10.1134/S0016266322010063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85135178531}
Linking options:
  • https://www.mathnet.ru/eng/faa3922
  • https://doi.org/10.4213/faa3922
  • https://www.mathnet.ru/eng/faa/v56/i1/p81
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :72
    References:70
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024