Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 3, Pages 42–52
DOI: https://doi.org/10.4213/faa3559
(Mi faa3559)
 

This article is cited in 1 scientific paper (total in 1 paper)

Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition

Yu. A. Neretinabcd

a Faculty of Mathematics, University of Vienna
b State Scientific Center of the Russian Federation - Institute for Theoretical and Experimental Physics, Moscow
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
d Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (222 kB) Citations (1)
References:
Abstract: The Fourier transform on the group $\operatorname{GL}(2,\mathbb{R})$ of real $2\times2$ matrices is considered. It is shown that the Fourier images of polynomial differential operators on $\operatorname{GL}(2,\mathbb{R})$ are differential-difference operators with coefficients meromorphic in the parameters of representations. Expressions for operators contain shifts in the imaginary direction with respect to the integration contour in the Plancherel formula. Explicit formulas for the images of partial derivations and multiplications by coordinates are presented.
Keywords: Fourier transform on groups, differential-difference operator, Weil representation, principal series of representations, operational calculus, semisimple Lie group, unitary representation, Heisenberg algebra.
Funding agency Grant number
Austrian Science Fund P28421
Received: 26.01.2018
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 3, Pages 194–202
DOI: https://doi.org/10.1007/s10688-018-0228-1
Bibliographic databases:
Document Type: Article
UDC: 517.986.6+517.445+512.813.4
Language: Russian
Citation: Yu. A. Neretin, “Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition”, Funktsional. Anal. i Prilozhen., 52:3 (2018), 42–52; Funct. Anal. Appl., 52:3 (2018), 194–202
Citation in format AMSBIB
\Bibitem{Ner18}
\by Yu.~A.~Neretin
\paper Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 3
\pages 42--52
\mathnet{http://mi.mathnet.ru/faa3559}
\crossref{https://doi.org/10.4213/faa3559}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841798}
\elib{https://elibrary.ru/item.asp?id=35276416}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 3
\pages 194--202
\crossref{https://doi.org/10.1007/s10688-018-0228-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448794900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055877393}
Linking options:
  • https://www.mathnet.ru/eng/faa3559
  • https://doi.org/10.4213/faa3559
  • https://www.mathnet.ru/eng/faa/v52/i3/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :34
    References:48
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024