Abstract:
The Fourier transform on the group GL(2,R) of real 2×2 matrices is considered. It is shown that the Fourier images of polynomial differential operators on GL(2,R) are differential-difference operators with coefficients meromorphic in the parameters of representations. Expressions for operators contain shifts in the imaginary direction with respect to the integration contour in the Plancherel formula. Explicit formulas for the images of partial derivations and multiplications by coordinates are presented.
Keywords:
Fourier transform on groups, differential-difference operator, Weil representation, principal series of representations, operational calculus, semisimple Lie group, unitary representation, Heisenberg algebra.
Citation:
Yu. A. Neretin, “Operational Calculus for the Fourier Transform on the Group GL(2,R) and the Problem about the Action of an Overalgebra in the Plancherel Decomposition”, Funktsional. Anal. i Prilozhen., 52:3 (2018), 42–52; Funct. Anal. Appl., 52:3 (2018), 194–202
\Bibitem{Ner18}
\by Yu.~A.~Neretin
\paper Operational Calculus for the Fourier Transform on the Group $\operatorname{GL}(2,\mathbb{R})$ and the Problem about the Action of an Overalgebra in the Plancherel Decomposition
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 3
\pages 42--52
\mathnet{http://mi.mathnet.ru/faa3559}
\crossref{https://doi.org/10.4213/faa3559}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841798}
\elib{https://elibrary.ru/item.asp?id=35276416}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 3
\pages 194--202
\crossref{https://doi.org/10.1007/s10688-018-0228-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448794900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055877393}
Linking options:
https://www.mathnet.ru/eng/faa3559
https://doi.org/10.4213/faa3559
https://www.mathnet.ru/eng/faa/v52/i3/p42
This publication is cited in the following 1 articles:
Yu. A. Neretin, “Fourier Transform on the Lobachevsky Plane and Operational Calculus”, Funct. Anal. Appl., 54:4 (2020), 278–286