Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 3, Pages 32–41
DOI: https://doi.org/10.4213/faa3527
(Mi faa3527)
 

This article is cited in 2 scientific papers (total in 2 papers)

Symmetrization of Cuntz' Picture for the Kasparov $KK$-Bifunctor

V. M. Manuilov

Lomonosov Moscow State University
Full-text PDF (200 kB) Citations (2)
References:
Abstract: Given $C^*$-algebras $A$ and $B$, we generalize the notion of a quasi-homomorphism from $A$ to $B$ in the sense of Cuntz by considering quasi-homomorphisms from some $C^*$-algebra $C$ to $B$ such that $C$ surjects onto $A$ and the two maps forming the quasi-homomorphism agree on the kernel of this surjection. Under an additional assumption, the group of homotopy classes of such generalized quasi-homomorphisms coincides with $KK(A, B)$. This makes the definition of the Kasparov bifunctor slightly more symmetric and provides more flexibility in constructing elements of $KK$-groups. These generalized quasi-homomorphisms can be viewed as pairs of maps directly from $A$ (instead of various $C$'s), but these maps need not be $*$-homomorphisms.
Keywords: $C^*$-algebra, Kasparov's $KK$-bifunctor, quasi-homomorphism.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00398
Received: 11.10.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 3, Pages 186–193
DOI: https://doi.org/10.1007/s10688-018-0227-2
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46L80
Language: Russian
Citation: V. M. Manuilov, “Symmetrization of Cuntz' Picture for the Kasparov $KK$-Bifunctor”, Funktsional. Anal. i Prilozhen., 52:3 (2018), 32–41; Funct. Anal. Appl., 52:3 (2018), 186–193
Citation in format AMSBIB
\Bibitem{Man18}
\by V.~M.~Manuilov
\paper Symmetrization of Cuntz' Picture for the Kasparov $KK$-Bifunctor
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 3
\pages 32--41
\mathnet{http://mi.mathnet.ru/faa3527}
\crossref{https://doi.org/10.4213/faa3527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841797}
\elib{https://elibrary.ru/item.asp?id=35276415}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 3
\pages 186--193
\crossref{https://doi.org/10.1007/s10688-018-0227-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448794900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055876915}
Linking options:
  • https://www.mathnet.ru/eng/faa3527
  • https://doi.org/10.4213/faa3527
  • https://www.mathnet.ru/eng/faa/v52/i3/p32
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :37
    References:38
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024