Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 2, Pages 25–39
DOI: https://doi.org/10.4213/faa3517
(Mi faa3517)
 

This article is cited in 10 scientific papers (total in 10 papers)

Probabilistic Approximation of the Evolution Operator

I. A. Ibragimovab, N. V. Smorodinaab, M. M. Faddeevab

a St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: A method for approximation of the operator $e^{-itH}$, where $H=-\frac{1}{2}\frac{d^2}{dx^2}+V(x)$, in the strong operator topology is proposed. The approximating operators have the form of expectations of functionals of a certain random point field.
Keywords: evolution equation, limit theorem, Feynman–Kac formula.
Funding agency Grant number
Russian Science Foundation 17-11-01136
Russian Foundation for Basic Research 16-01-00258
I. A. Ibragimov acknowledges the financial support of the Russian Foundation for Basic Research (project no. 16-01-00258). N. V. Smorodina (who authors the results of Section 3) acknowledges the support of the Russian Science Foundation (project no. 17-11-01136). M. M. Faddeev (who authors the results of Section 4) acknowledges the support of the Russian Science Foundation (project no. 17-11-01136).
Received: 31.08.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 2, Pages 101–112
DOI: https://doi.org/10.1007/s10688-018-0216-5
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: 28C20, 60H05, 60G57
Language: Russian
Citation: I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic Approximation of the Evolution Operator”, Funktsional. Anal. i Prilozhen., 52:2 (2018), 25–39; Funct. Anal. Appl., 52:2 (2018), 101–112
Citation in format AMSBIB
\Bibitem{IbrSmoFad18}
\by I.~A.~Ibragimov, N.~V.~Smorodina, M.~M.~Faddeev
\paper Probabilistic Approximation of the Evolution Operator
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 2
\pages 25--39
\mathnet{http://mi.mathnet.ru/faa3517}
\crossref{https://doi.org/10.4213/faa3517}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799410}
\elib{https://elibrary.ru/item.asp?id=32837035}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 2
\pages 101--112
\crossref{https://doi.org/10.1007/s10688-018-0216-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437825500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049584842}
Linking options:
  • https://www.mathnet.ru/eng/faa3517
  • https://doi.org/10.4213/faa3517
  • https://www.mathnet.ru/eng/faa/v52/i2/p25
  • This publication is cited in the following 10 articles:
    1. M. V. Platonova, “On a Probabilistic Approximation of a Group of Unitary Operators”, J Math Sci, 2024  crossref
    2. M. V. Platonova, “Analog formuly Feinmana–Katsa dlya mnogomernogo uravneniya Shrëdingera”, Veroyatnost i statistika. 34, Posvyaschaetsya yubileyu Andreya Nikolaevicha BORODINA, Zap. nauchn. sem. POMI, 525, POMI, SPb., 2023, 96–108  mathnet
    3. I. A. Alekseev, M. V. Platonova, “Veroyatnostnaya approksimatsiya uravneniya Shrëdingera kompleksnoznachnymi sluchainymi protsessami”, Veroyatnost i statistika. 35, Posvyaschaetsya yubileyu Yany Isaevny BELOPOLSKOI, Zap. nauchn. sem. POMI, 526, POMI, SPb., 2023, 17–28  mathnet
    4. M. V. Platonova, “An analogue of the Feynman–Kac formula for a high-order operator”, Theory Probab. Appl., 67:1 (2022), 62–76  mathnet  crossref  crossref  mathscinet  zmath
    5. M. V. Platonova, “O veroyatnostnoi approksimatsii odnoi gruppy unitarnykh operatorov”, Veroyatnost i statistika. 32, Posvyaschaetsya yubileyu Ildara Abdullovicha IBRAGIMOVA, Zap. nauchn. sem. POMI, 510, POMI, SPb., 2022, 211–224  mathnet
    6. M. V. Platonova, S. V. Tsykin, “On One Limit Theorem Related to the Cauchy Problem Solution for the Schrödinger Equation with a Fractional Derivative Operator of Order $ \upalpha\ \upepsilon \bigcup_{m=3}^{\infty}\left(m-1,m\right) $”, J Math Sci, 258:6 (2021), 912  crossref  mathscinet
    7. M. V. Platonova, S. V. Tsykin, “Probabilistic approximation of the solution of the Cauchy problem for the higher-order Schrödinger equation”, Theory Probab. Appl., 65:4 (2021), 558–569  mathnet  crossref  crossref  isi
    8. M. V. Platonova, S. V. Tsykin, “Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$”, Dokl. Math., 101:2 (2020), 144–146  mathnet  crossref  crossref  zmath  elib
    9. I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Approximation of the evolution operator by expectations of functionals of sums of independent random variables”, Theory Probab. Appl., 64:1 (2019), 12–26  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. M. V. Platonova, S. V. Tsykin, “Ob odnoi predelnoi teoreme, svyazannoi s resheniem zadachi Koshi dlya uravneniya Shrëdingera s operatorom drobnogo differentsirovaniya poryadka $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$”, Veroyatnost i statistika. 28, Zap. nauchn. sem. POMI, 486, POMI, SPb., 2019, 254–264  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:629
    Full-text PDF :115
    References:94
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025