Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2018, Volume 52, Issue 2, Pages 40–65
DOI: https://doi.org/10.4213/faa3520
(Mi faa3520)
 

This article is cited in 7 scientific papers (total in 7 papers)

Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian

V. V. Krylov

Department of Mathematics, National Research University Higher School of Economics, Moscow, Russia
Full-text PDF (383 kB) Citations (7)
References:
Abstract: Let $G$ be a connected reductive algebraic group over $\mathbb{C}$, and let $\Lambda^{+}_{G}$ be the monoid of dominant weights of $G$. We construct integrable crystals $\mathbf{B}^{G}(\lambda)$, $\lambda\in\Lambda^+_G$, using the geometry of generalized transversal slices in the affine Grassmannian of the Langlands dual group of $G$. We also construct tensor product maps $\mathbf{p}_{\lambda_{1},\lambda_{2}}\colon\mathbf{B}^{G}(\lambda_1)\otimes\mathbf{B}^{G}(\lambda_2) \to\mathbf{B}^{G}(\lambda_{1}+\lambda_{2})\cup\{0\}$ in terms of multiplication in generalized transversal slices. Let $L \subset G$> be a Levi subgroup of $G$. We describe the functor $\operatorname{Res}^G_L\colon\operatorname{Rep}(G)\to\operatorname{Rep}(L)$ of restriction to $L$ in terms of the hyperbolic localization functors for generalized transversal slices.
Keywords: affine Grassmannian, Kashiwara crystals, geometric Satake isomorphism, generalized slices.
Funding agency Grant number
Möbius Contest
This work was supported in part by the Laboratory of Algebraic Geometry and Its Applications, Higher School of Economics; August Möbius Contest (2016); and Dobrushin scholarship.
Received: 03.09.2017
English version:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 2, Pages 113–133
DOI: https://doi.org/10.1007/s10688-018-0217-4
Bibliographic databases:
Document Type: Article
UDC: 514.747.2
Language: Russian
Citation: V. V. Krylov, “Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian”, Funktsional. Anal. i Prilozhen., 52:2 (2018), 40–65; Funct. Anal. Appl., 52:2 (2018), 113–133
Citation in format AMSBIB
\Bibitem{Kry18}
\by V.~V.~Krylov
\paper Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 2
\pages 40--65
\mathnet{http://mi.mathnet.ru/faa3520}
\crossref{https://doi.org/10.4213/faa3520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799411}
\elib{https://elibrary.ru/item.asp?id=32837037}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 2
\pages 113--133
\crossref{https://doi.org/10.1007/s10688-018-0217-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437825500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049587073}
Linking options:
  • https://www.mathnet.ru/eng/faa3520
  • https://doi.org/10.4213/faa3520
  • https://www.mathnet.ru/eng/faa/v52/i2/p40
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :47
    References:29
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024