Abstract:
For semicontinuous summation methods generated by $\Lambda=\{\lambda_{n}(h)\}$ ($n=0,1,\dots$; $h>0$) of Fourier series in eigenfunctions of a discrete Sturm–Liouville operator of class $\mathcal{B}$, some results on the uniform a.e. behavior of $\Lambda$-means are obtained. The results are based on strong- and weak-type estimates of maximal functions. As a consequence, some statements on the behavior of the summation methods generated by the exponential means $\lambda_{n}(h)=\exp(-u^{\alpha}(n)h)$ are obtained. An application to a generalized heat equation is given.
Citation:
B. P. Osilenker, “On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator”, Funktsional. Anal. i Prilozhen., 52:2 (2018), 90–93; Funct. Anal. Appl., 52:2 (2018), 154–157
\Bibitem{Osi18}
\by B.~P.~Osilenker
\paper On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator
\jour Funktsional. Anal. i Prilozhen.
\yr 2018
\vol 52
\issue 2
\pages 90--93
\mathnet{http://mi.mathnet.ru/faa3486}
\crossref{https://doi.org/10.4213/faa3486}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3799417}
\elib{https://elibrary.ru/item.asp?id=32837055}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 2
\pages 154--157
\crossref{https://doi.org/10.1007/s10688-018-0223-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437825500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049601040}
Linking options:
https://www.mathnet.ru/eng/faa3486
https://doi.org/10.4213/faa3486
https://www.mathnet.ru/eng/faa/v52/i2/p90
This publication is cited in the following 4 articles:
R. M. Gadzhimirzaev, “Estimates for the Convergence Rate of a Fourier Series in Laguerre–Sobolev Polynomials”, Sib Math J, 65:4 (2024), 751
R. M. Gadzhimirzaev, “Otsenki skorosti skhodimosti ryada Fure po polinomam Lagerra — Soboleva”, Sib. matem. zhurn., 65:4 (2024), 622–635
R. M. Gadzhimirzaev, “Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials”, Sb. Math., 215:9 (2024), 1202–1223
B. P. Osilenker, “On multipliers for Fourier series in Sobolev orthogonal polynomials”, Sb. Math., 213:8 (2022), 1058–1095